Long String Scattering in $c=1$ String Theory

Victor A. Rodriguez

Harvard University

with B. Balthazar, X. Yin [1705.07151,1810.07233]
Strings 2019
July 9

$c=1$ String Theory

Worldsheet theory

$$
\begin{gathered}
\underset{\text { (time) }}{X^{0}}+c=25 \text { Liouville CFT } \\
\text { (space) }
\end{gathered}
$$

$c=1$ String Theory

Worldsheet theory

$$
\begin{gathered}
\underset{\text { (time) }}{X^{0}}+c=25 \text { Liouville CFT } \\
\text { (space) }
\end{gathered}+\quad b, c \text { ghosts }
$$

Liouville CFT

- spectrum: scalar Virasoro primaries
V_{P} with $P \in \mathbb{R}_{\geq 0}$, and weight $h=1+P^{2}$.

$c=1$ String Theory

Worldsheet theory

$$
\begin{gathered}
\underset{\text { (time) }}{X^{0}}+c=25 \text { Liouville CFT } \\
\text { (space) }
\end{gathered}+\quad b, c \text { ghosts }
$$

Liouville CFT

- spectrum: scalar Virasoro primaries

$$
V_{P} \text { with } P \in \mathbb{R}_{\geq 0}, \text { and weight } h=1+P^{2} .
$$

- OPE coefficients: given by the DOZZ formula

$$
\mathcal{C}\left(P_{1}, P_{2}, P_{3}\right)=\text { Known }
$$

This is all the data you need to compute any correlation function in Liouville theory.

$c=1$ String Theory

BRST cohomology representatives

$$
\mathcal{V}_{\omega}^{ \pm}=g_{s}: e^{ \pm i \omega X^{0}}: V_{P=\omega / 2}
$$

are called "tachyons", and they are massless.

$c=1$ String Theory

BRST cohomology representatives

$$
\mathcal{V}_{\omega}^{ \pm}=g_{s}: e^{ \pm i \omega X^{0}}: V_{P=\omega / 2}
$$

are called "tachyons", and they are massless.
Lagrangian

$$
S_{L}[\phi]=\frac{1}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{g}\left(g^{m n} \partial_{m} \phi \partial_{n} \phi+2 R \phi+4 \pi \mu e^{2 \phi}\right)
$$

Spacetime picture:
weak coupling ϕ

$c=1$ String Theory

BRST cohomology representatives

$$
\mathcal{V}_{\omega}^{ \pm}=g_{s}: e^{ \pm i \omega X^{0}}: V_{P=\omega / 2}
$$

are called "tachyons", and they are massless.
Lagrangian

$$
S_{L}[\phi]=\frac{1}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{g}\left(g^{m n} \partial_{m} \phi \partial_{n} \phi+2 R \phi+4 \pi \mu e^{2 \phi}\right)
$$

Spacetime picture:

$c=1$ String Theory

BRST cohomology representatives

$$
\mathcal{V}_{\omega}^{ \pm}=g_{s}: e^{ \pm i \omega X^{0}}: V_{P=\omega / 2}
$$

are called "tachyons", and they are massless.
Lagrangian

$$
S_{L}[\phi]=\frac{1}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{g}\left(g^{m n} \partial_{m} \phi \partial_{n} \phi+2 R \phi+4 \pi \mu e^{2 \phi}\right)
$$

Spacetime picture:

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

- ZZ-brane (D0-brane)

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

- ZZ-brane (D0-brane)
- FZZT-brane (D1-brane), labeled by $s \in \mathbb{R}_{\geq 0}$

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

- ZZ-brane (D0-brane)
- FZZT-brane (D1-brane), labeled by $s \in \mathbb{R}_{\geq 0}$
spectrum $\quad \psi_{P}^{s_{1}, s_{2}}$, with $P \in \mathbb{R}_{\geq 0}$

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

- ZZ-brane (D0-brane)
- FZZT-brane (D1-brane), labeled by $s \in \mathbb{R}_{\geq 0}$
spectrum $\quad \psi_{P}^{s_{1}, s_{2}}$, with $P \in \mathbb{R}_{\geq 0}$

OPE
coefficients

Known

Open strings on FZZT branes are represented by (Neumann boundary conditions for X^{0})

$$
\Psi_{\omega}^{s_{1}, s_{2} \pm}=g_{o} * e^{ \pm i \omega X^{0}}{ }_{*}^{*} \psi_{P=\omega}^{s_{1}, s_{2}}
$$

D-branes, BCFT, in $c=1$ string theory

Conformal boundary conditions in Liouville theory.

- ZZ-brane (D0-brane)
- FZZT-brane (D1-brane), labeled by $s \in \mathbb{R}_{\geq 0}$

Spacetime interpretation:

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Long strings in $c=1$ string theory

Today we will study the dual of the FZZT brane, indirectly.

Proposal [Maldacena]

| long
 strings | states in adjoint
 sector of MQM |
| :---: | :---: | :---: |

$L \rightarrow L+C$ amplitude from the worldsheet

Amplitude describing the decay of a long string by emitting a closed string:

$L \rightarrow L+C$ amplitude from the worldsheet

Amplitude describing the decay of a long string by emitting a closed string:

The worldsheet diagram to be computed is

$L \rightarrow L+C$ amplitude from the worldsheet

Amplitude describing the decay of a long string by emitting a closed string:

The worldsheet diagram to be computed is

$L \rightarrow L+C$ amplitude from the worldsheet

Amplitude describing the decay of a long string by emitting a closed string:

The worldsheet diagram to be computed is

$\lim _{\substack{s \rightarrow \infty \\ \epsilon_{i} \rightarrow \text { fixed }^{\infty}}} \int$ (moduli) $\quad \int_{0}^{\infty} d P \quad \mathcal{R}^{s} \times \quad \times \quad C^{s, s, s} \times \begin{gathered}\text { conformal } \\ \text { block }\end{gathered}$

Matrix Model

Quantum mechanics of an $N \times N$ Hermitian matrix M, with Hamiltonian

$$
H=\operatorname{Tr}\left[\frac{1}{2} P^{2}-\frac{1}{2} M^{2}\right]
$$

Matrix Model

Quantum mechanics of an $N \times N$ Hermitian matrix M, with Hamiltonian

$$
H=\operatorname{Tr}\left[\frac{1}{2} P^{2}-\frac{1}{2} M^{2}\right]
$$

Following standard procedure, going to polar coordinates $M=\Omega^{\dagger} \Lambda \Omega$, one obtains

$$
H^{\prime}=\frac{1}{2} \sum_{i=1}^{N}\left[-\frac{\partial^{2}}{\partial \lambda_{i}^{2}}-\lambda_{i}^{2}+2 \mu\right]+\frac{1}{2} \sum_{\substack{i \neq j \\ \text { nonsinglet }}} \frac{R_{i j} R_{j i}}{\left(\lambda_{i}-\lambda_{j}\right)^{2}}
$$

Matrix Model

Quantum mechanics of an $N \times N$ Hermitian matrix M, with Hamiltonian

$$
H=\operatorname{Tr}\left[\frac{1}{2} P^{2}-\frac{1}{2} M^{2}\right]
$$

Following standard procedure, going to polar coordinates $M=\Omega^{\dagger} \Lambda \Omega$, one obtains

$$
H^{\prime}=\frac{1}{2} \sum_{i=1}^{N}\left[-\frac{\partial^{2}}{\partial \lambda_{i}^{2}}-\lambda_{i}^{2}+2 \mu\right]+\frac{1}{2} \sum_{\substack{i \neq j \\ \text { singlet } \\ \text { nonsinglet }}} \frac{R_{i j} R_{j i}}{\left(\lambda_{i}-\lambda_{j}\right)^{2}}
$$

$L \rightarrow L+C$ amplitude from the Matrix Model

The long string state in MQM.

$$
\begin{aligned}
|w\rangle & \equiv \psi_{i j}\left(\lambda_{1}, \cdots, \lambda_{N}\right)|i j\rangle \\
& =\left(\begin{array}{lll}
w\left(\lambda_{1}\right) & & \\
& w\left(\lambda_{2}\right) & \\
& & \ddots .
\end{array}\right) \quad \psi_{0}\left(\lambda_{1}, \cdots, \lambda_{N}\right)
\end{aligned}
$$

$L \rightarrow L+C$ amplitude from the Matrix Model

The long string state in MQM.

$$
\begin{array}{rll}
|w\rangle & \equiv & \psi_{i j}\left(\lambda_{1}, \cdots, \lambda_{N}\right)|i j\rangle \\
& =\left(\begin{array}{ccc}
w\left(\lambda_{1}\right) & & \\
& w\left(\lambda_{2}\right) & \\
& & \ddots .
\end{array}\right) & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}
$$

It is a zero weight state, and is invariant under $S_{N}^{\prime}: \lambda_{i} \leftrightarrow \lambda_{j}$ and $i \leftrightarrow j$.

$L \rightarrow L+C$ amplitude from the Matrix Model

We now compute

$L \rightarrow L+C$ amplitude from the Matrix Model

We now compute

using the Born approximation:

$$
\mathcal{A}_{L \rightarrow L+C}^{\text {tree }}=-2 \pi i\left\langle w_{E_{2}}\right| b_{\omega_{3}} H_{i n t}^{\prime}\left|w_{E_{1}}\right\rangle=\cdots
$$

$L \rightarrow L+C$ amplitude from the Matrix Model

We now compute

using the Born approximation:

$$
\mathcal{A}_{L \rightarrow L+C}^{\text {tree }}=-2 \pi i\left\langle w_{E_{2}}\right| b_{\omega_{3}} H_{i n t}^{\prime}\left|w_{E_{1}}\right\rangle=\cdots
$$

Results agree!

(a) Worldsheet

(b) Matrix Model

Future directions

- Understanding the MM dual of the FZZT brane itself. Add fundamental and anti-fundamental dofs to the matrix model. Is there a collective field theory one can write down?
- Non-perturbative effects mediated by ZZ-instantons (Dirichlet for X^{0} and ZZ for Liouville), corresponding to the tunneling of fermions across the inverted quadratic potential. [very soon!]

Future directions

- Understanding the MM dual of the FZZT brane itself. Add fundamental and anti-fundamental dofs to the matrix model. Is there a collective field theory one can write down?
- Non-perturbative effects mediated by ZZ-instantons (Dirichlet for X^{0} and ZZ for Liouville), corresponding to the tunneling of fermions across the inverted quadratic potential. [very soon!]

Thank you!

