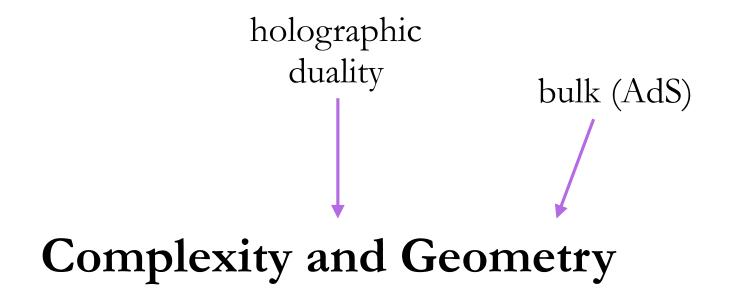
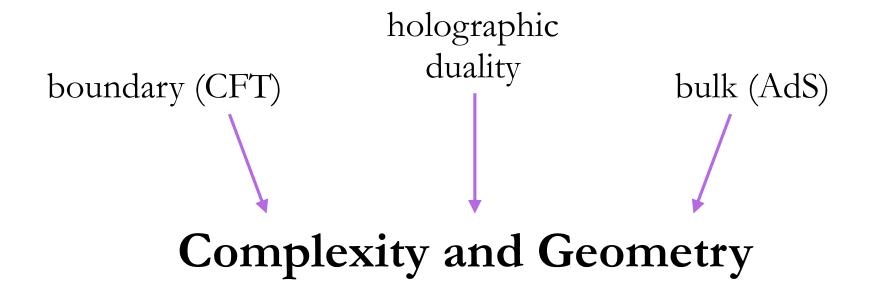


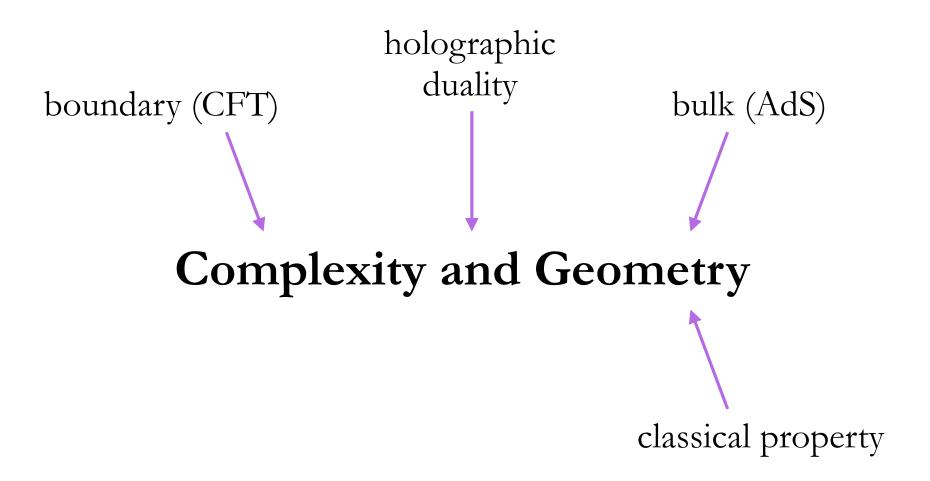
Complexity and Geometry

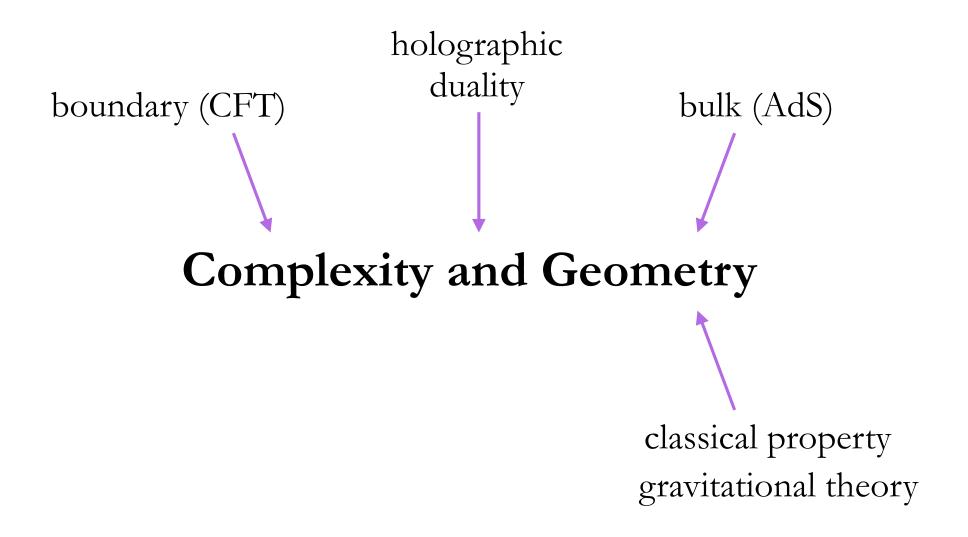
holographic duality

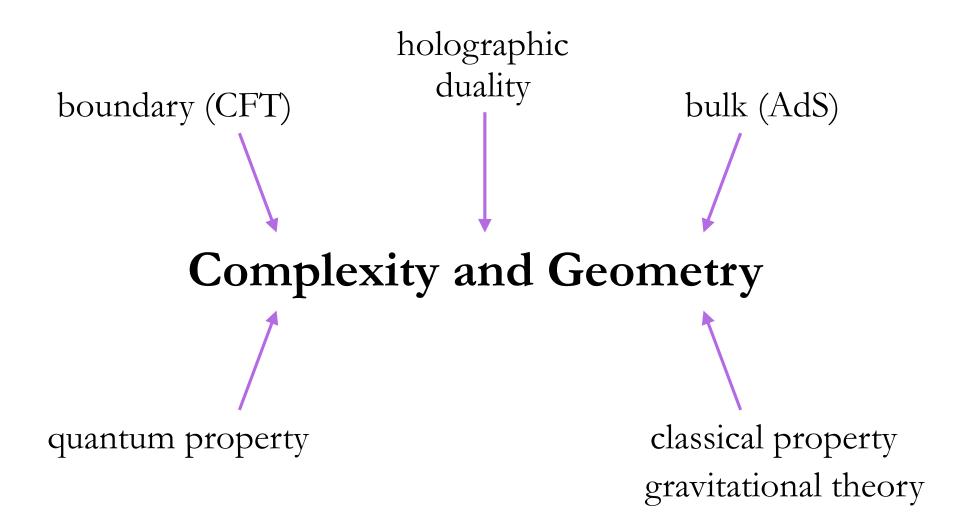
Complexity and Geometry

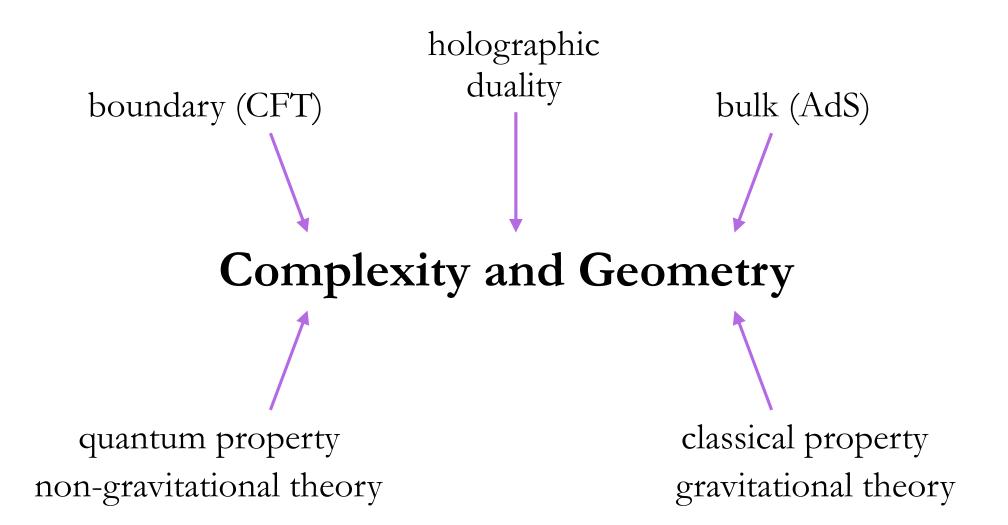


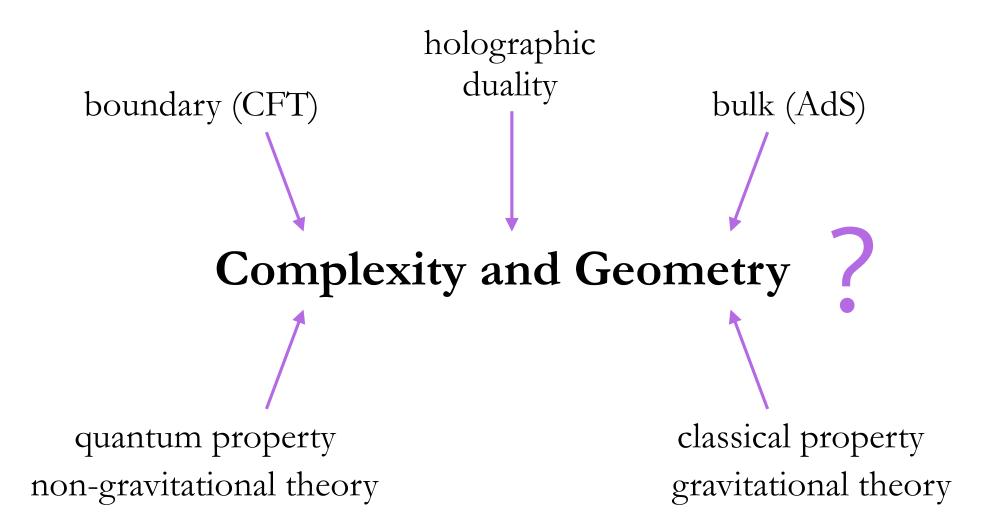










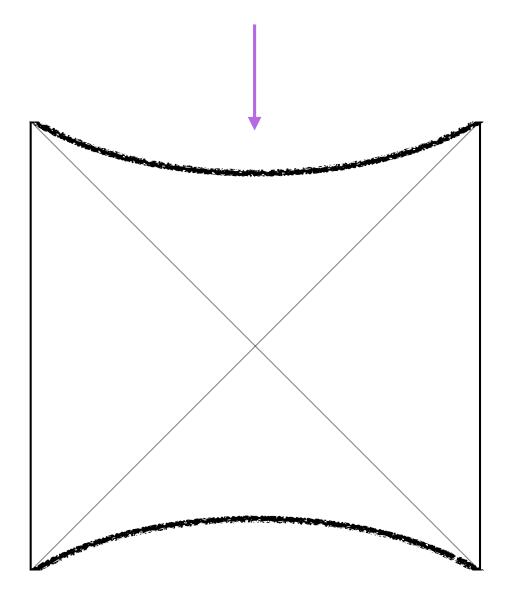


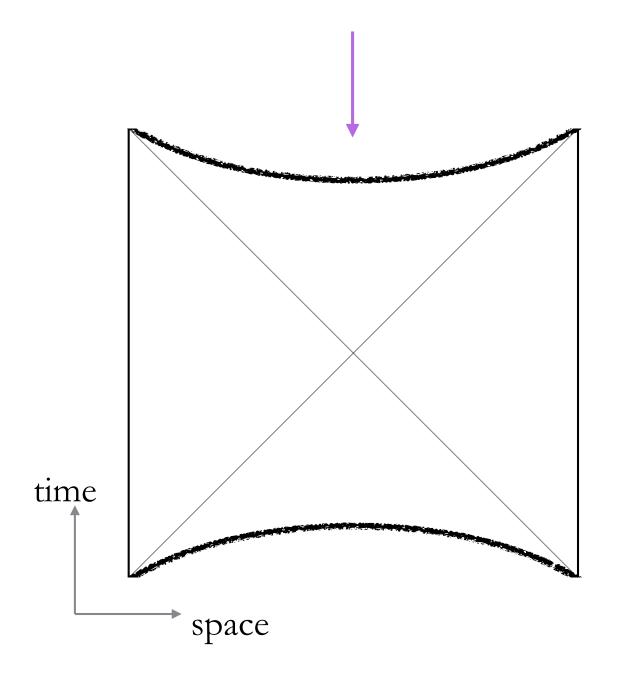
Complexity and Geometry classical property gravitational theory

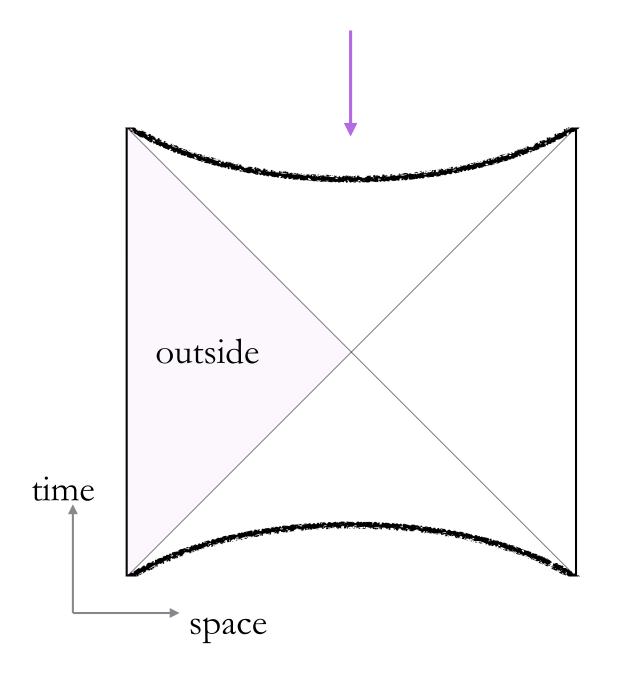
Complexity and Geometry

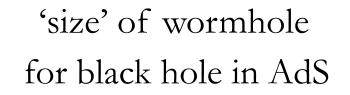
'size' of wormhole for black hole in AdS

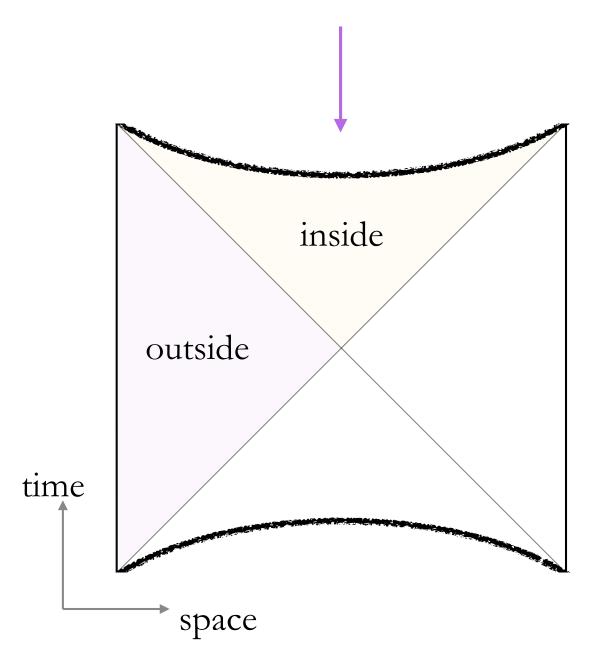
classical property gravitational theory

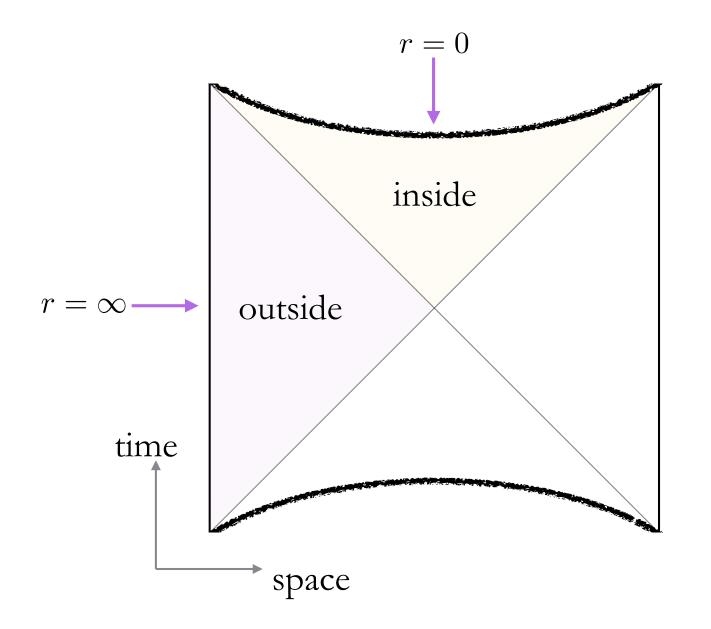


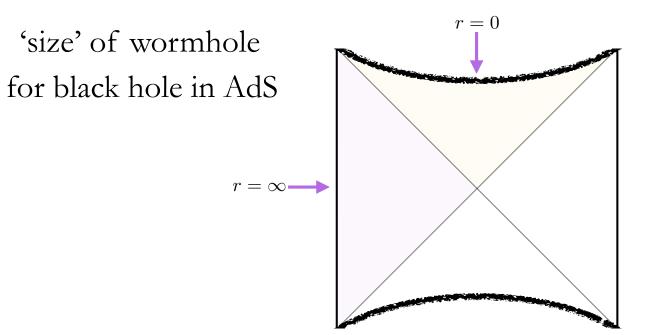


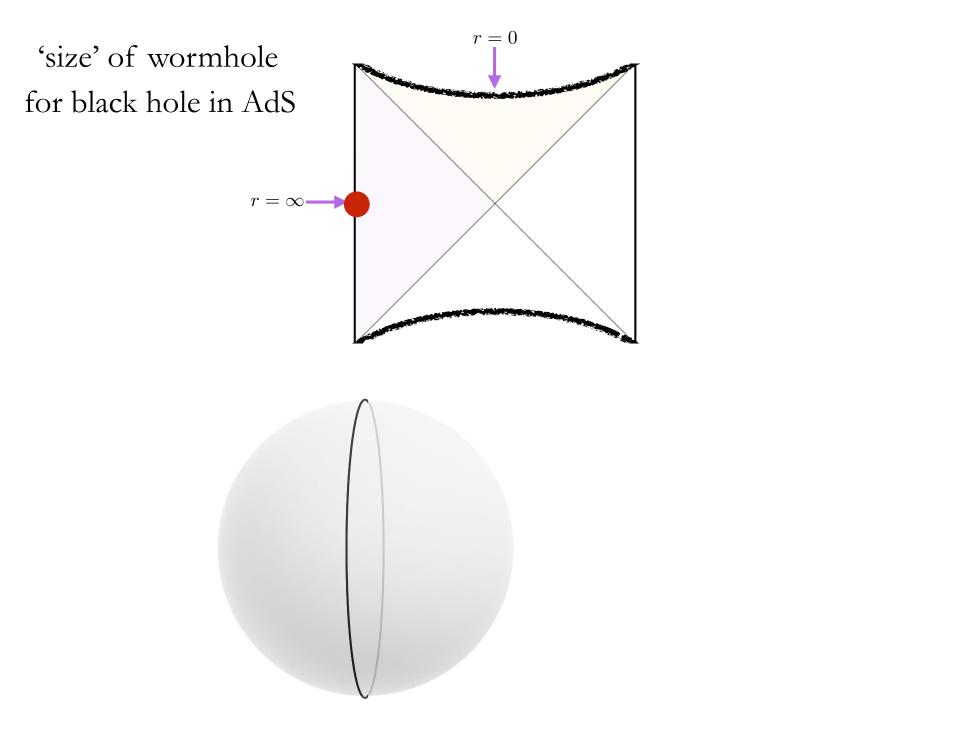


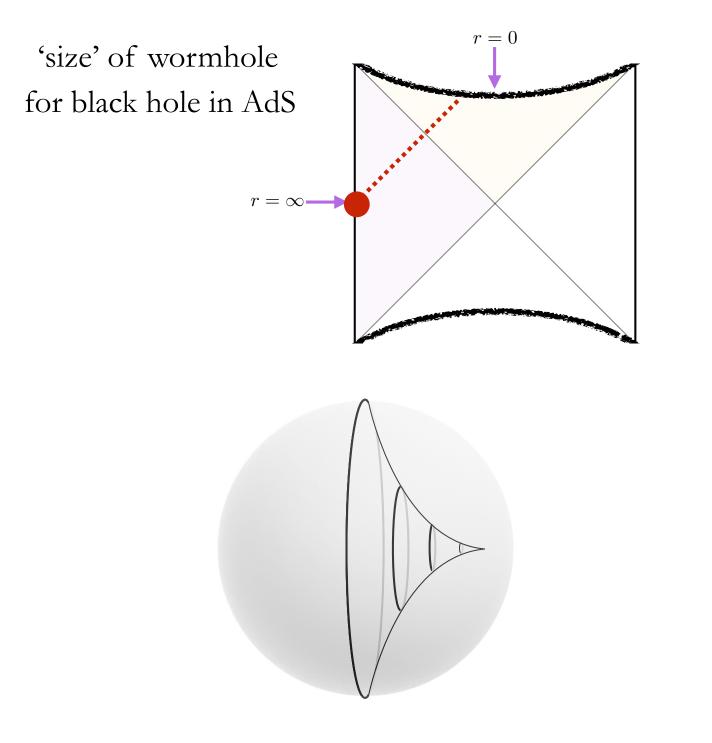


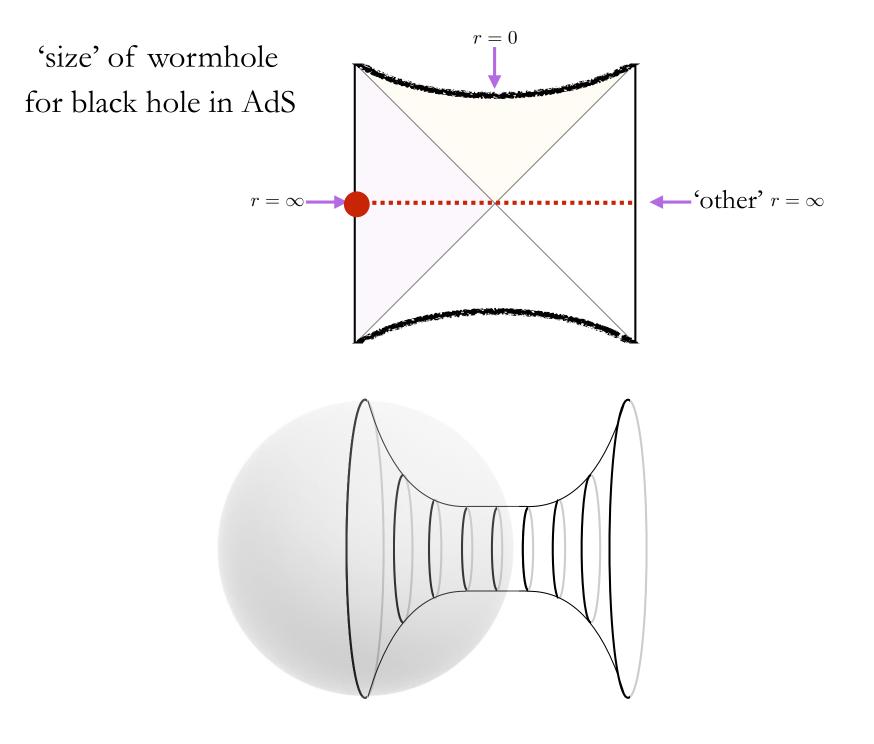


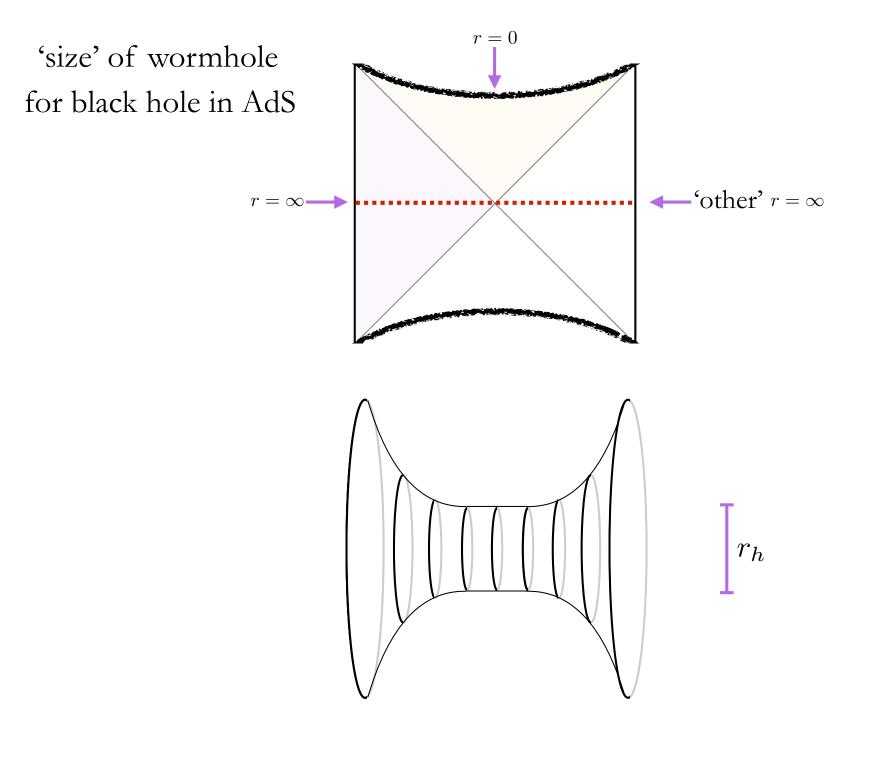


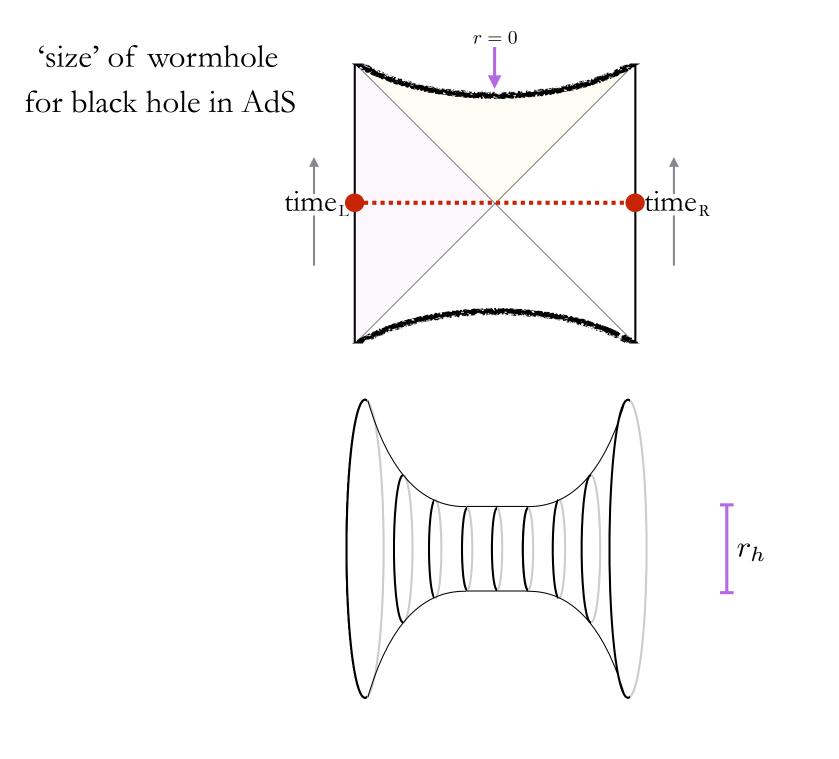


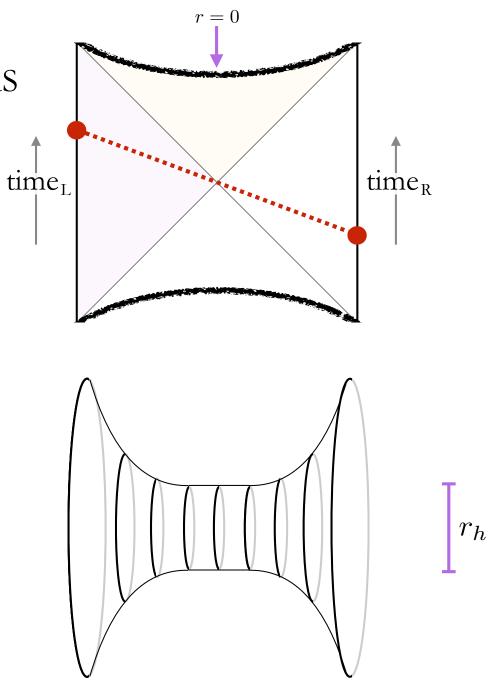


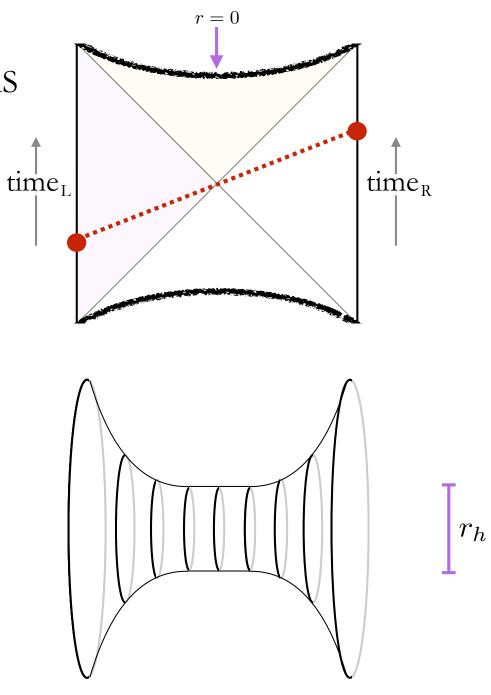


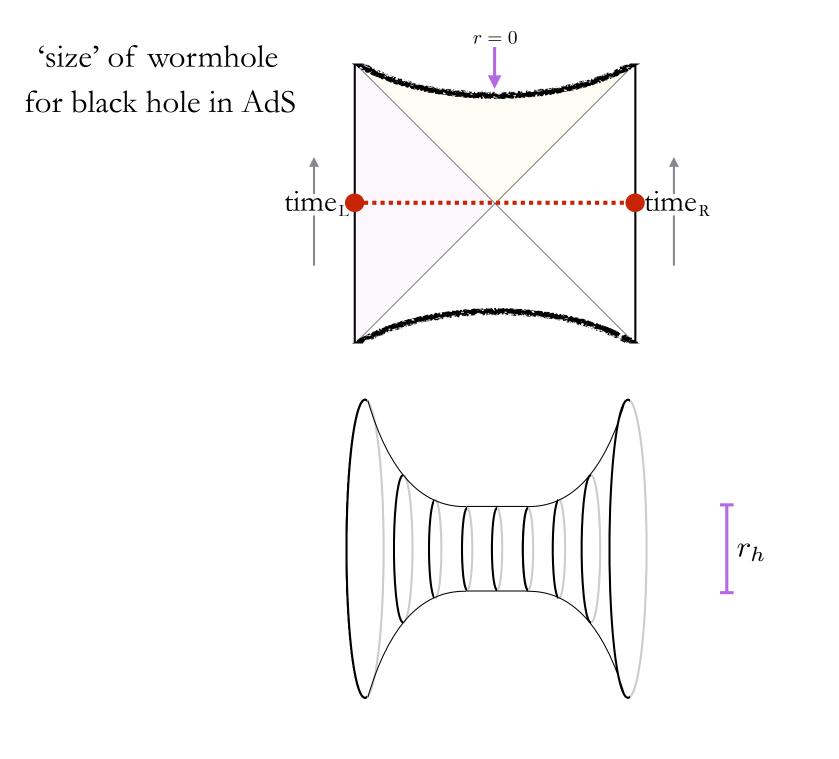


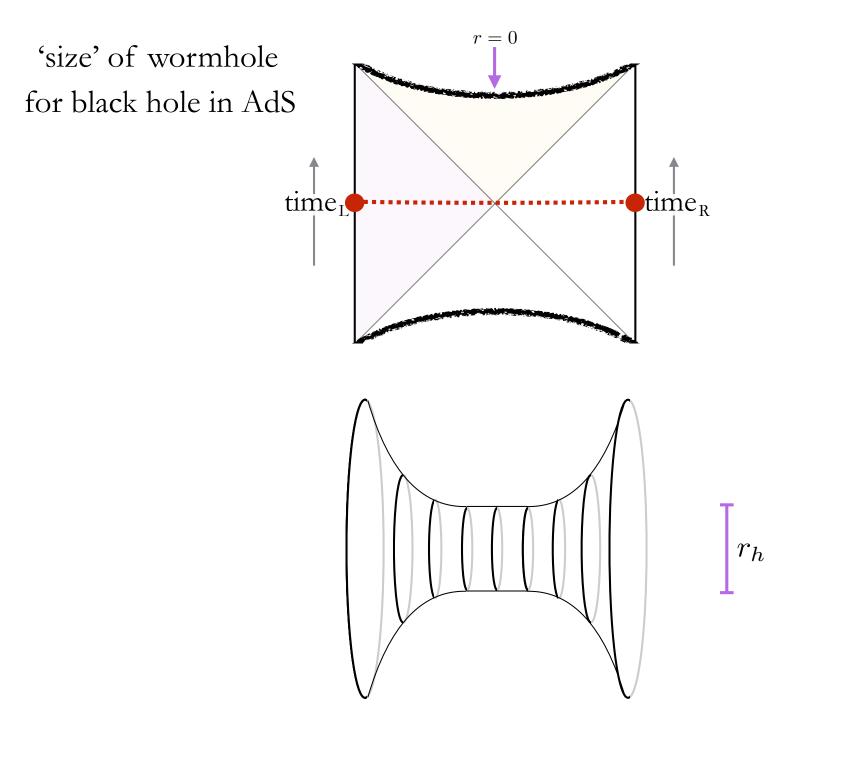


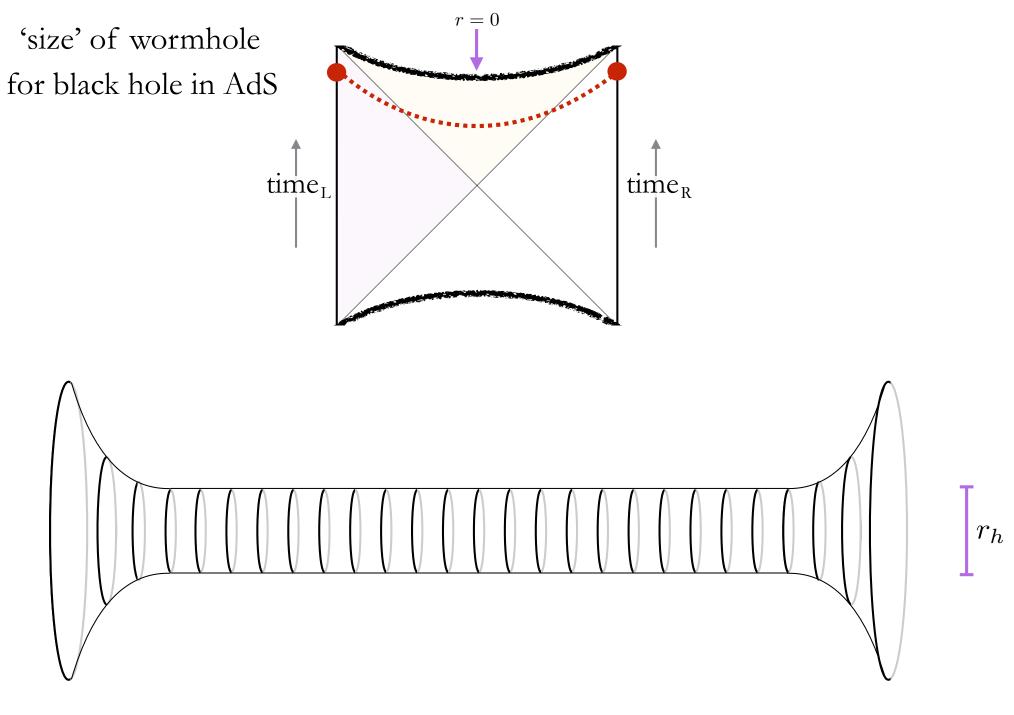


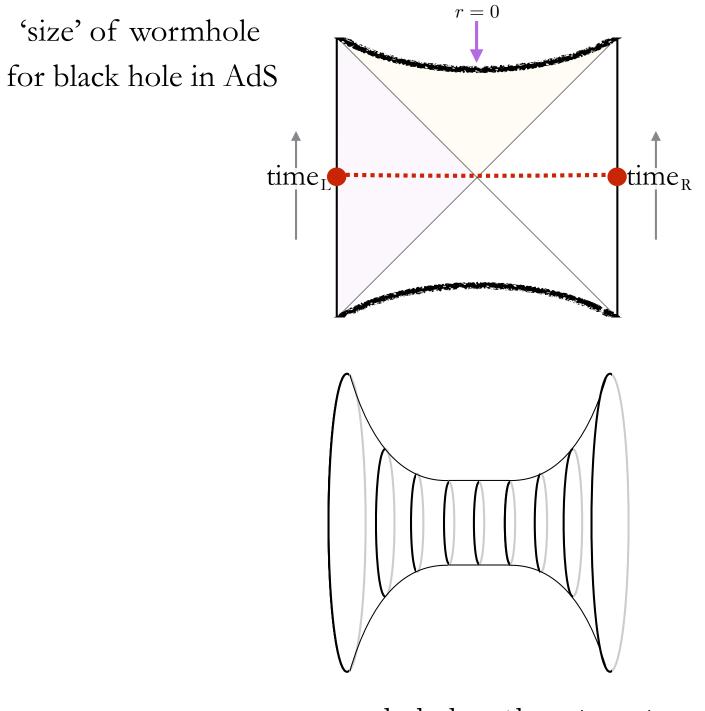




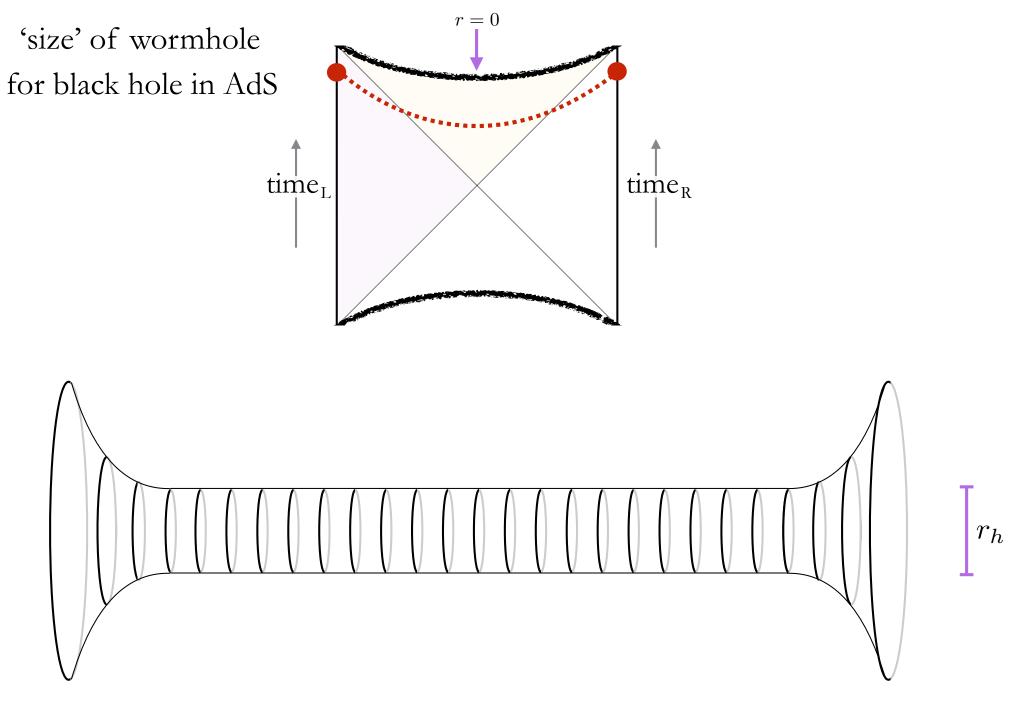


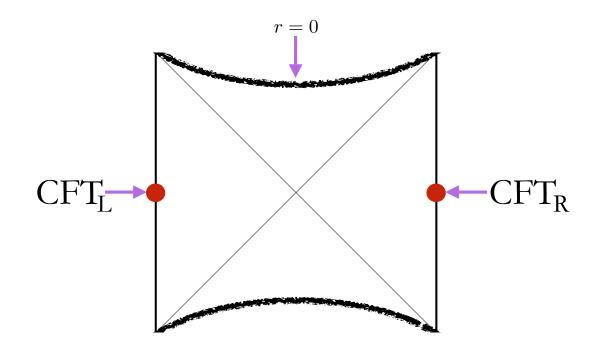


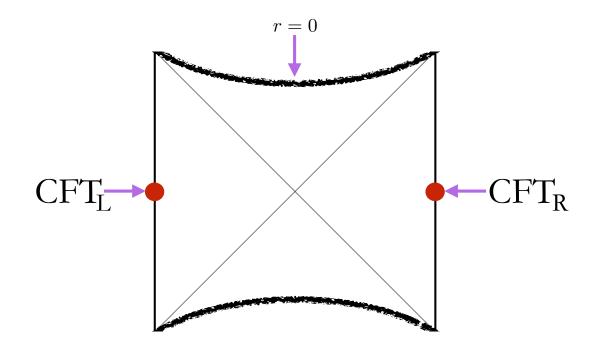




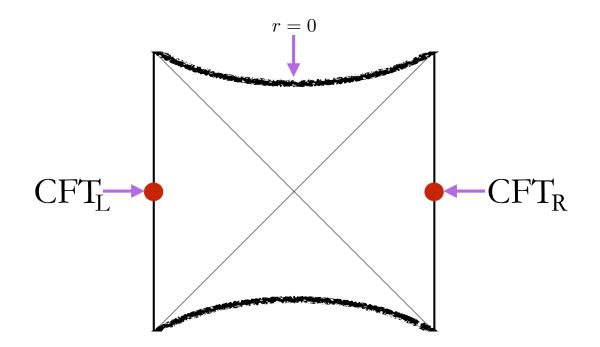
 r_h





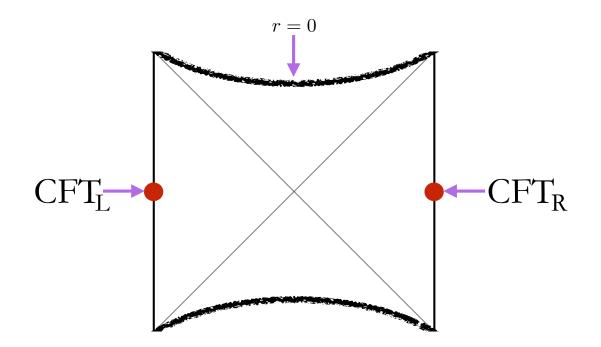


$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_i/2} |E_i\rangle_L |E_i\rangle_R$$



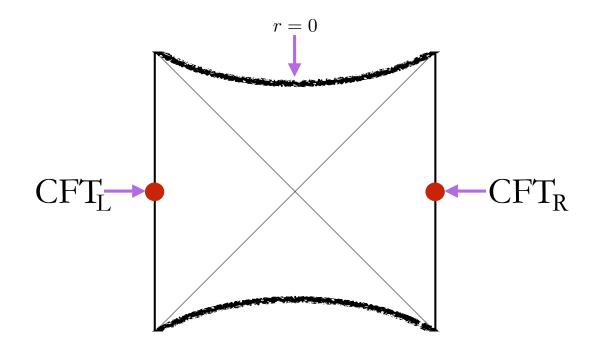
$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_{i}/2} |E_{i}\rangle_{L} |E_{i}\rangle_{R}$$

$$|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$$



$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_{i}/2} |E_{i}\rangle_{L} |E_{i}\rangle_{R}$$
$$|\psi(t_{L}, t_{R})\rangle = \sum_{i} e^{-\beta E_{i}/2 + iE_{i}(t_{L} + t_{R})} |E_{i}\rangle_{L} |E_{i}\rangle_{R}$$

What is CFT dual to linear growth of wormhole?



$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_{i}/2} |E_{i}\rangle_{L} |E_{i}\rangle_{R}$$
$$|\psi(t_{L}, t_{R})\rangle = \sum_{i} e^{-\beta E_{i}/2 + iE_{i}(t_{L} + t_{R})} |E_{i}\rangle_{L} |E_{i}\rangle_{R}$$

What is CFT dual to linear growth of wormhole? COMPLEXITY?

COMPLEXITY?

computational complexity of a quantum state

computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

DEFINITION?

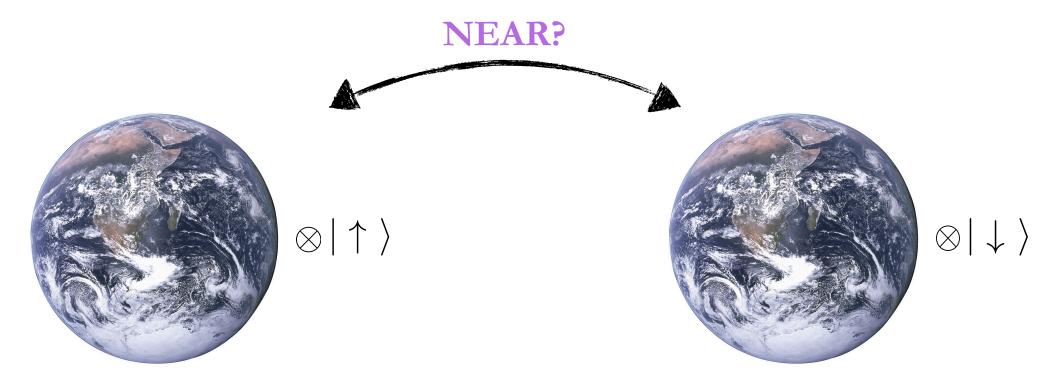
computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

DEFINITION?

 $\otimes |\downarrow\rangle$

computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

DEFINITION?



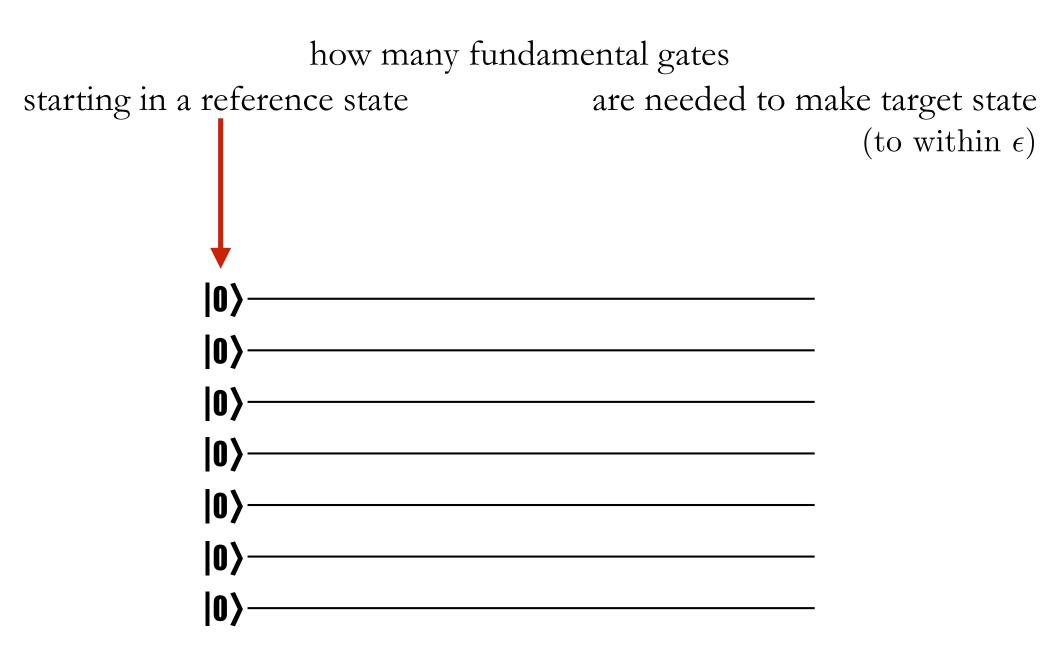
computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

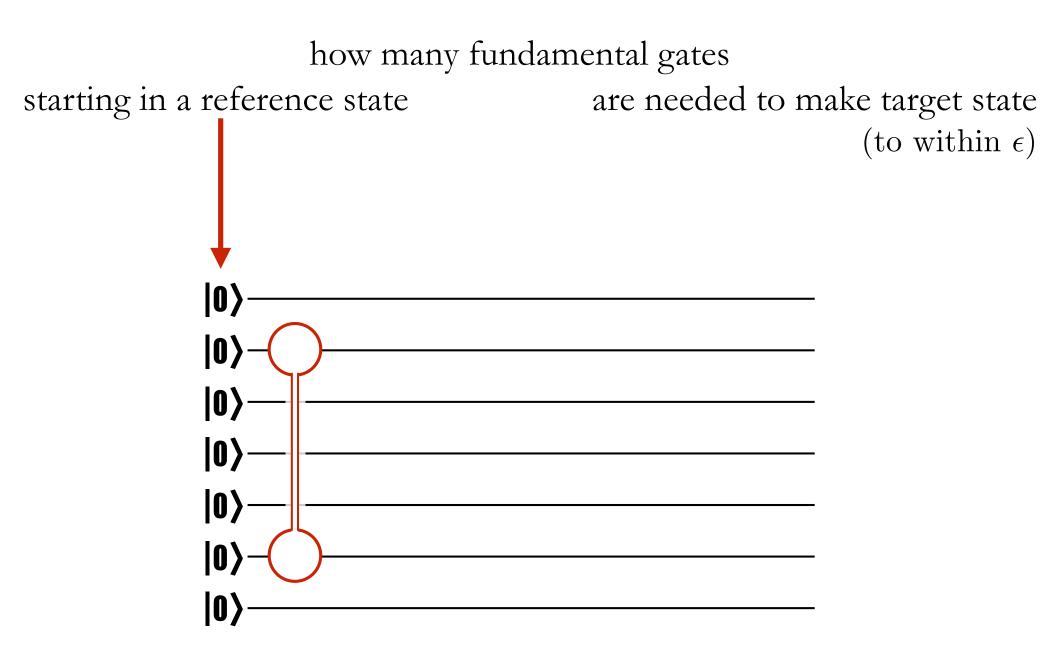
DEFINITION? starting in a reference state e.g. $|\text{TFD}\rangle = \sum_{i} e^{-\beta E_i/2} |E_i\rangle_L |E_i\rangle_R$

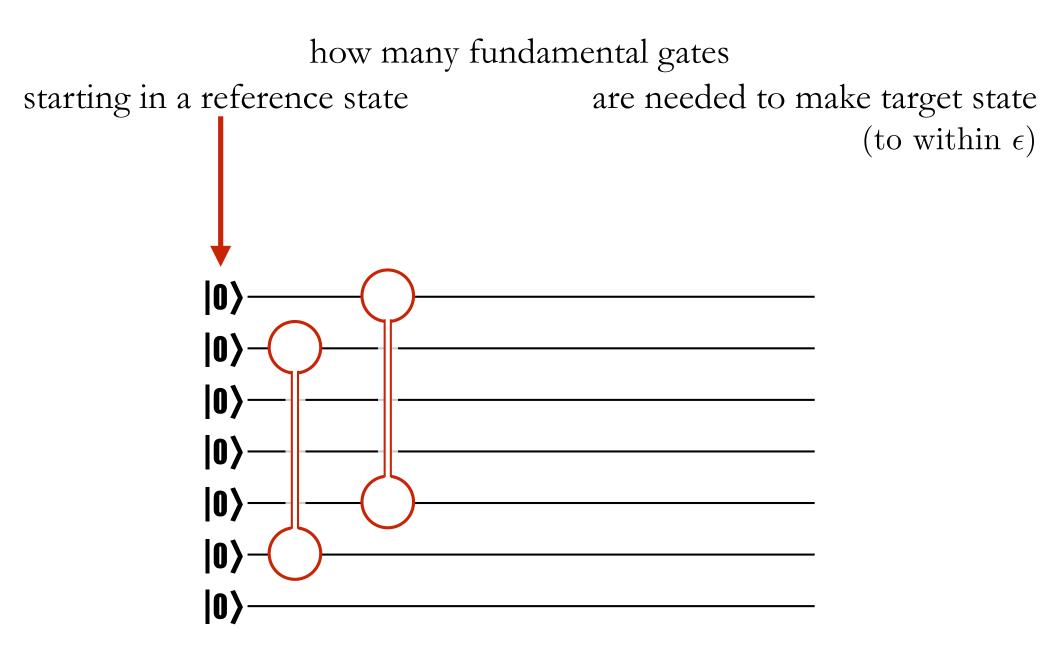
how many fundamental gates e.g. unitaries each of which act only on two-qubits

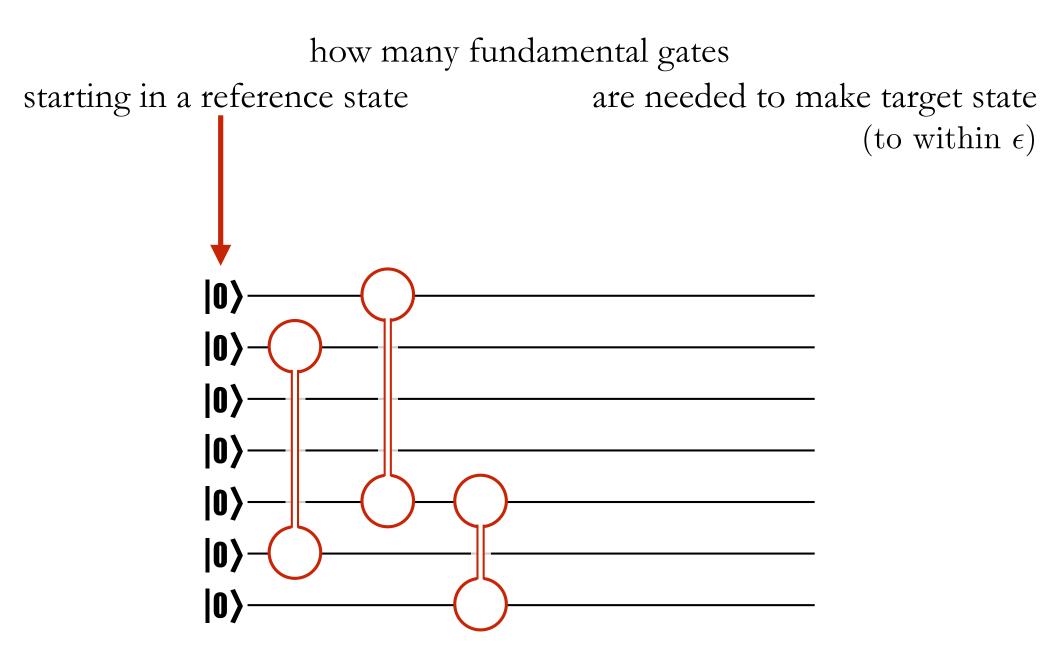
are needed to make target state e.g. to within an accuracy ϵ

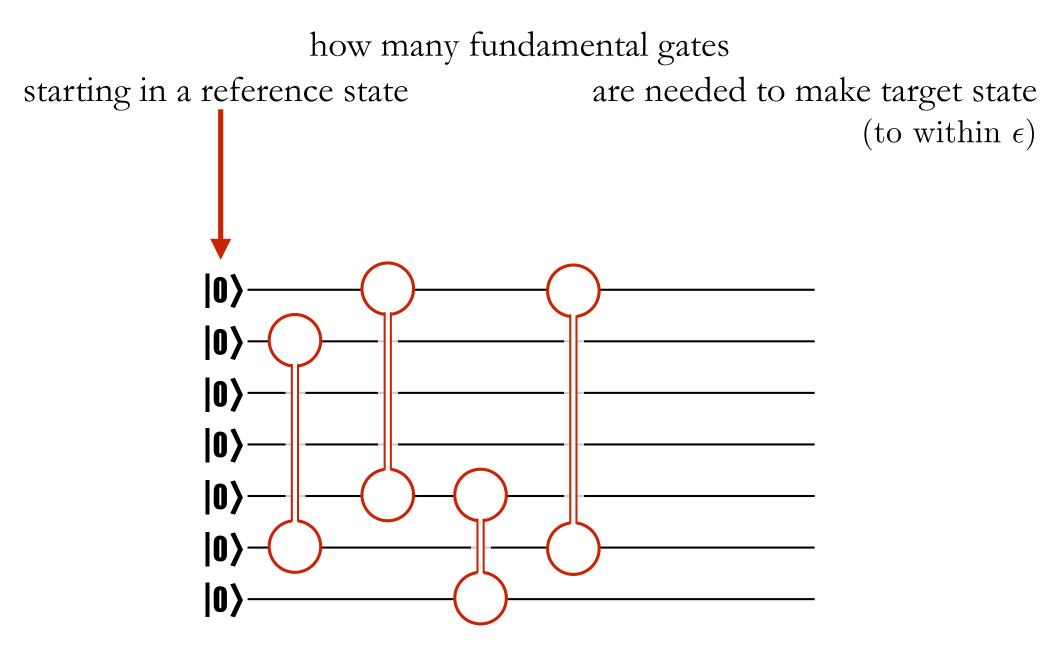
how many fundamental gates starting in a reference state are needed to make target state

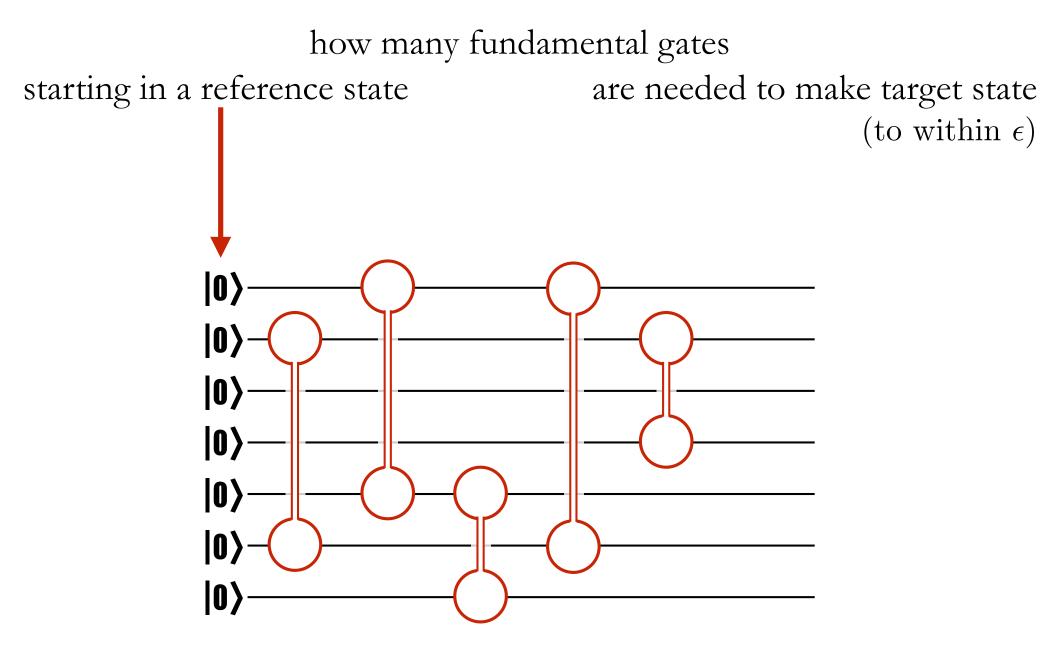












how many fundamental gates are needed to make target state starting in a reference state (to within ϵ) 0) **|0**> **|0**> **|0**> 0

computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

DEFINITION: starting in a reference state

e.g.
$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_i/2} |E_i\rangle_L |E_i\rangle_R$$

how many fundamental gates e.g. unitaries each of which act only on two-qubits

are needed to make target state e.g. to within an accuracy ϵ computational complexity of a quantum state e.g. $|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$

DEFINITION: starting in a reference state

e.g.
$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_i/2} |E_i\rangle_L |E_i\rangle_R$$

how many fundamental gates e.g. unitaries each of which act only on two-qubits

are needed to make target state e.g. to within an accuracy ϵ

evolution of complexity?

```
QUANTUM (N qubits)
```

e.g. $\alpha_1 |0000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^N

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^N # almost orthogonal states ~ 2^{2^N}

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^{N} # almost orthogonal states ~ $2^{2^{N}}$ Hilbert Space is HUGE

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^{N} # almost orthogonal states ~ $2^{2^{N}}$ Hilbert Space is HUGE

circuits $\sim (N^2)^{\#gates}$

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^{N} # almost orthogonal states ~ $2^{2^{N}}$ Hilbert Space is HUGE

circuits ~
$$(N^2)^{\text{#gates}}$$

 $\mathcal{C}_{\max} \sim 2^N$

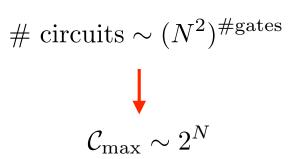
QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^{N} # almost orthogonal states ~ $2^{2^{N}}$

Hilbert Space is HUGE

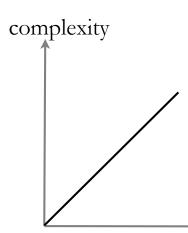
complexity

gates

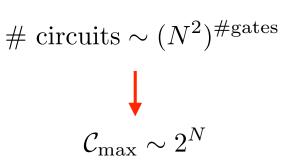


QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^{N} # almost orthogonal states ~ $2^{2^{N}}$



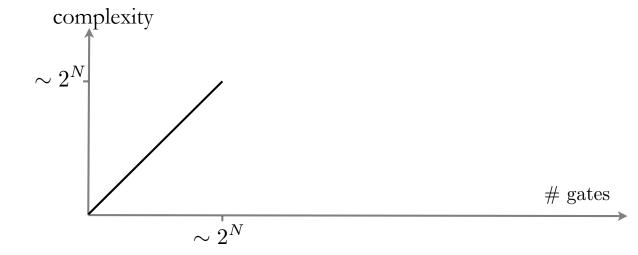
gates



QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^N # almost orthogonal states ~ 2^{2^N}

Hilbert Space is HUGE



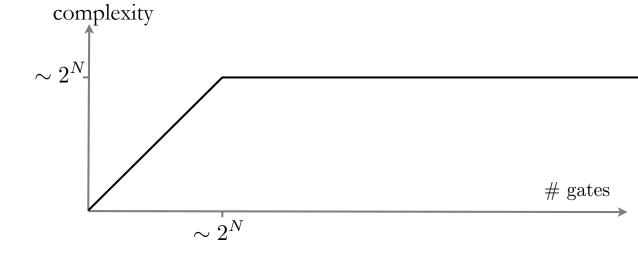
circuits
$$\sim (N^2)^{\text{#gates}}$$

 $\mathcal{C}_{\max} \sim 2^N$

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^N # almost orthogonal states ~ 2^{2^N}

Hilbert Space is HUGE



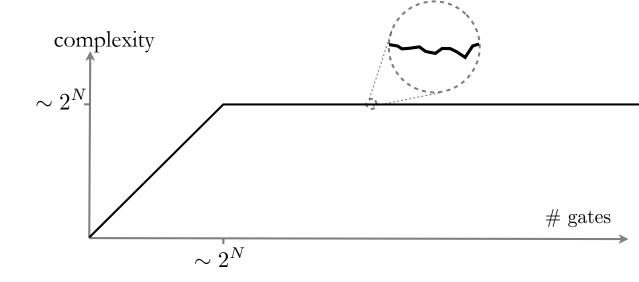
circuits ~
$$(N^2)^{\text{#gates}}$$

 $\mathcal{C}_{\max} \sim 2^N$

QUANTUM (N qubits) e.g. $\alpha_1 |00000000\rangle + \dots$ $\dots + \alpha_{2^N} |1111111\rangle$

exactly orthogonal states = 2^N # almost orthogonal states ~ 2^{2^N}

Hilbert Space is HUGE



circuits
$$\sim (N^2)^{\text{#gates}}$$

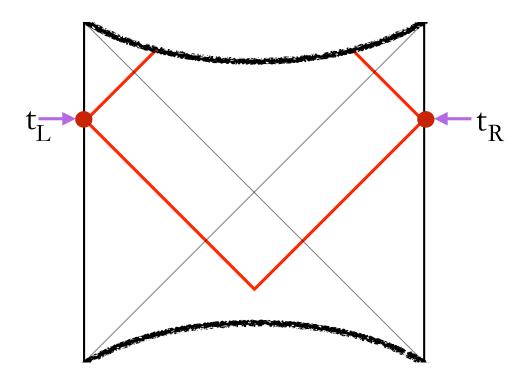
 $\mathcal{C}_{\max} \sim 2^N$

EVIDENCE:

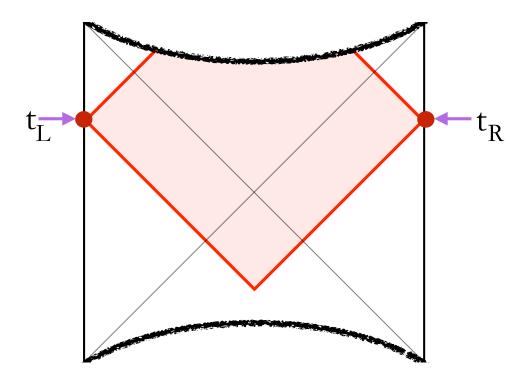
EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large

EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large

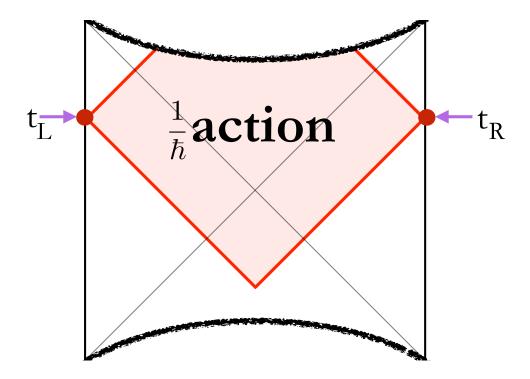
EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large

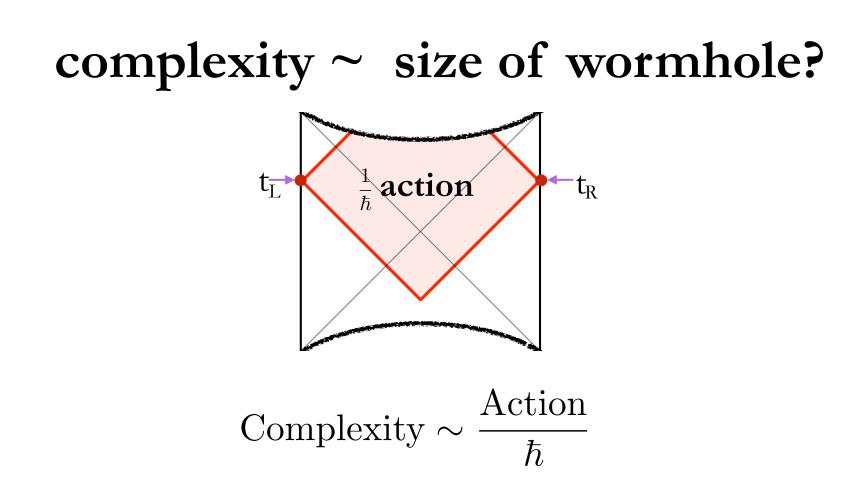


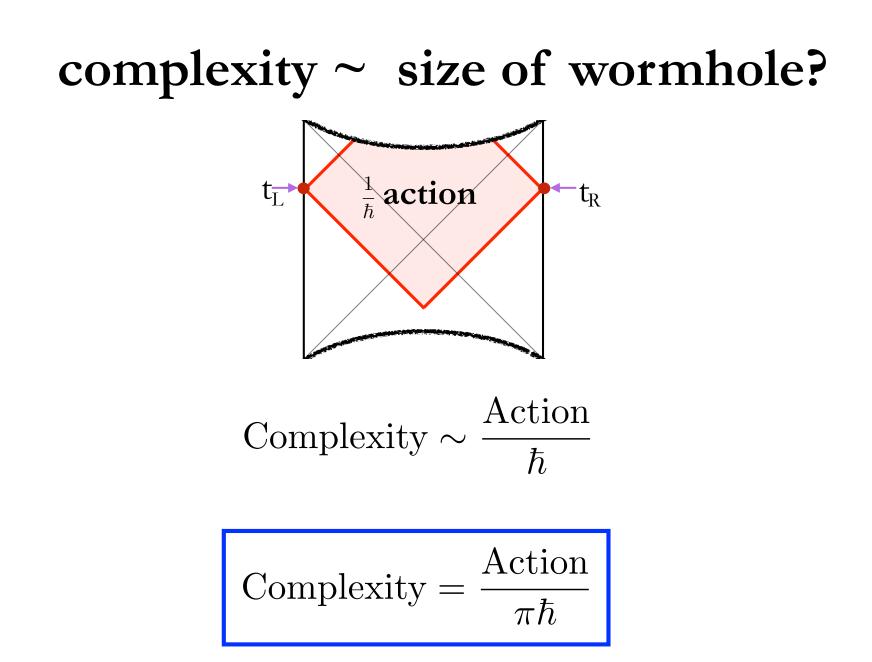
EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large



EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large







ASSUME a conjectured bound on rate of computation AND that black holes saturate that bound

EVIDENCE: • both expected to grow linearly (at early times)• both can be exponentially large

EVIDENCE: • both expected to grow linearly (at early times)

- both can be exponentially large
- perturb black hole with boundary operator

EVIDENCE:

- both expected to grow linearly (at early times)
- both can be exponentially large
- perturb black hole with boundary operator
 - in CFT, leads to increase in complexity (chaos)
 - in wormhole, leads to shockwave, increases size

EVIDENCE:

- both expected to grow linearly (at early times)
- both can be exponentially large
- perturb black hole with boundary operator
 - in CFT, leads to increase in complexity (chaos)
 - in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

small perturbation Complexity[W] = 1

- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

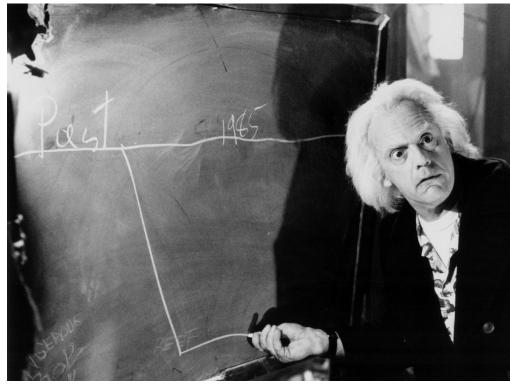
the two increases match including delicate cancellations!

small perturbation \downarrow Complexity[\mathbb{W}] = 1

- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

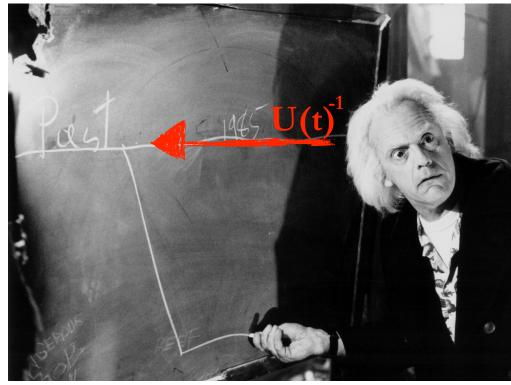
small perturbation \downarrow Complexity[W] = 1



- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

small perturbation \downarrow Complexity[W] = 1



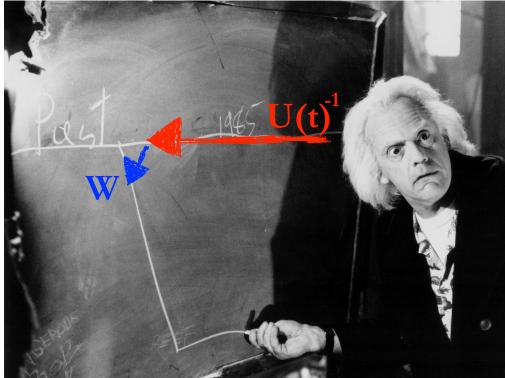
- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

small perturbation \downarrow Complexity[\mathbb{W}] = 1

$$Complexity[U(t) W U(t)^{-1}] =$$

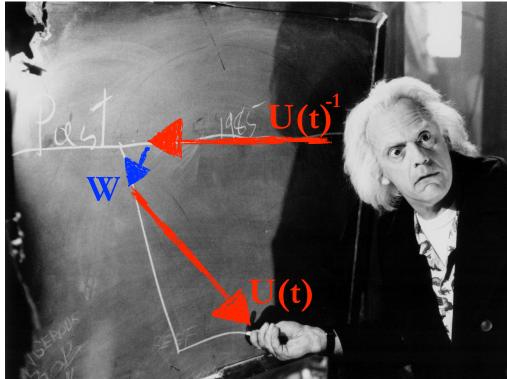
"precursor"



- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

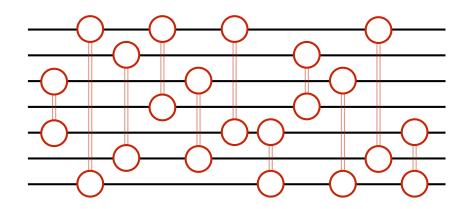
small perturbation \downarrow Complexity[W] = 1

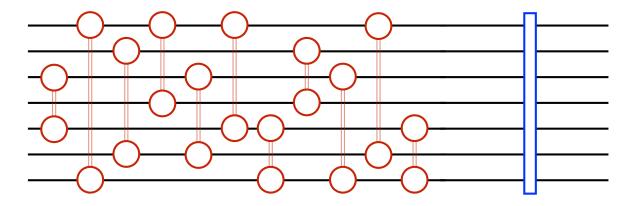


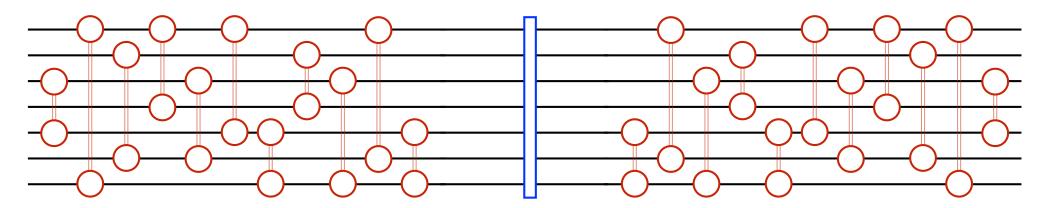
- in CFT, leads to increase in complexity (chaos)
- in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

small perturbation \downarrow Complexity[\mathbb{W}] = 1

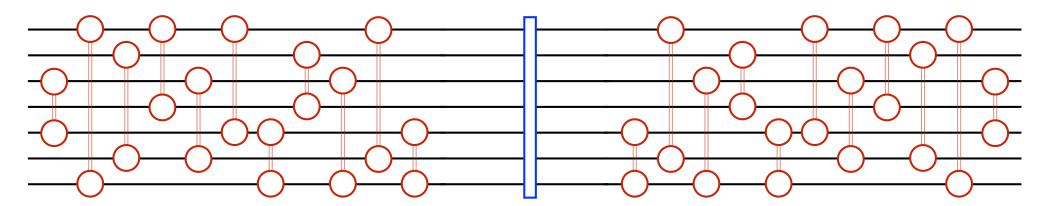




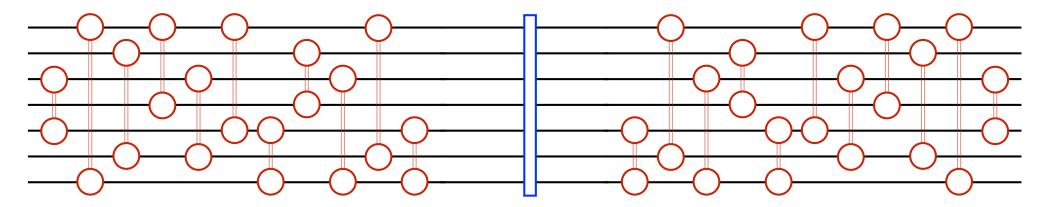


 $Complexity[\mathbf{U}(t) \le \mathbf{U}(t)^{-1}] \le C[\mathbf{U}(t)] + C[\mathbf{W}] + C[\mathbf{U}(t)^{-1}]$

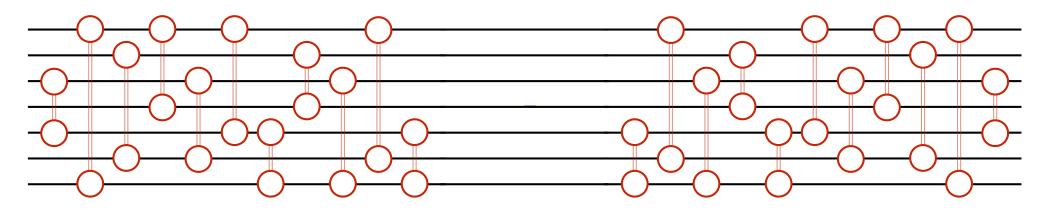
 $\bullet W = \mathbb{I}$



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

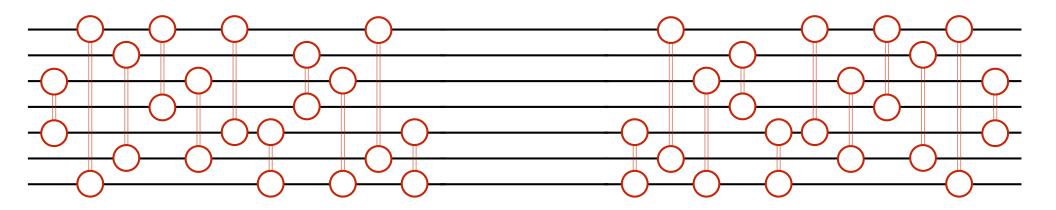


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

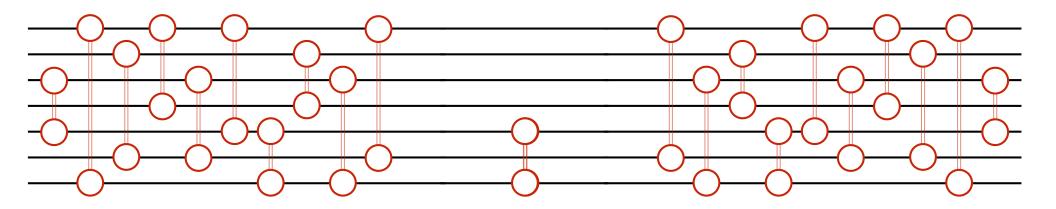


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

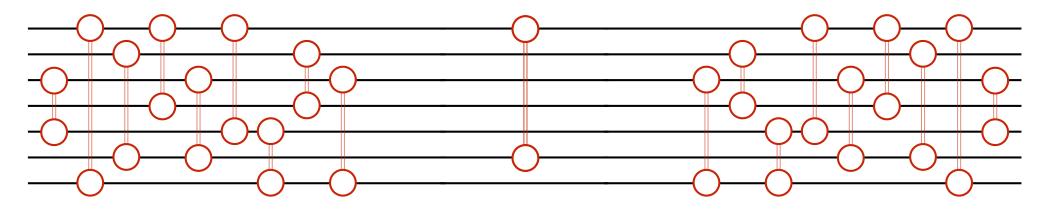
• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0



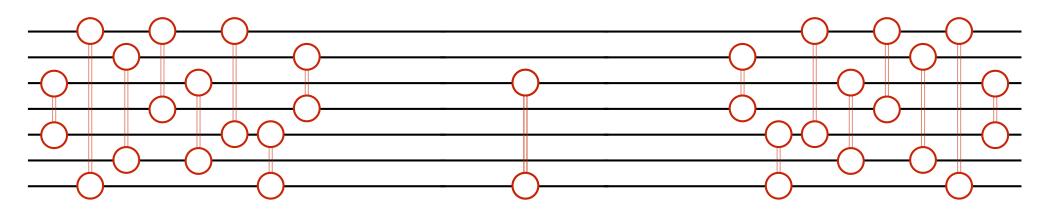
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

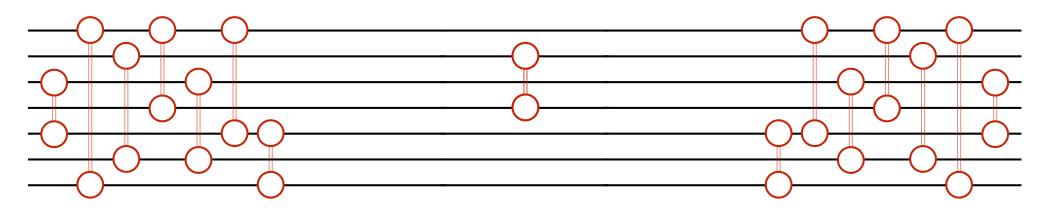


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

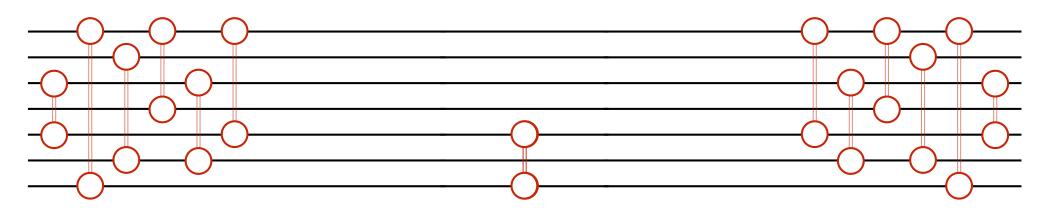


 $Complexity[\mathbf{U}(t) \le \mathbf{U}(t)^{-1}] \le C[\mathbf{U}(t)] + C[\mathbf{W}] + C[\mathbf{U}(t)^{-1}]$

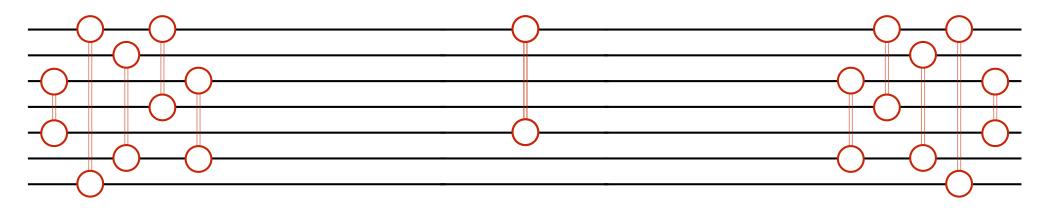
• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0



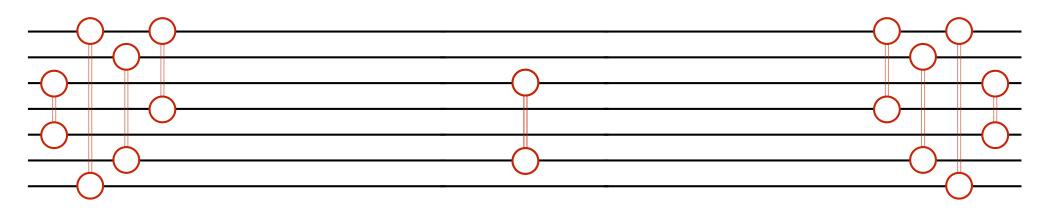
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]



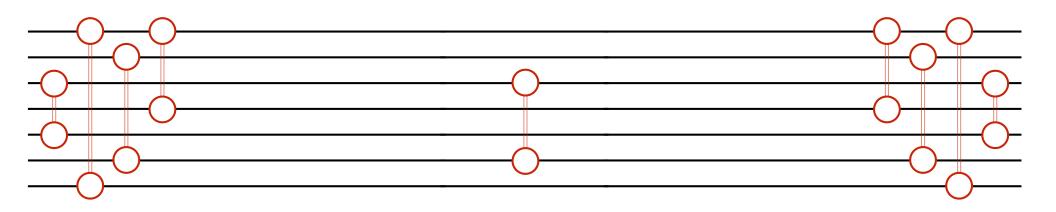
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

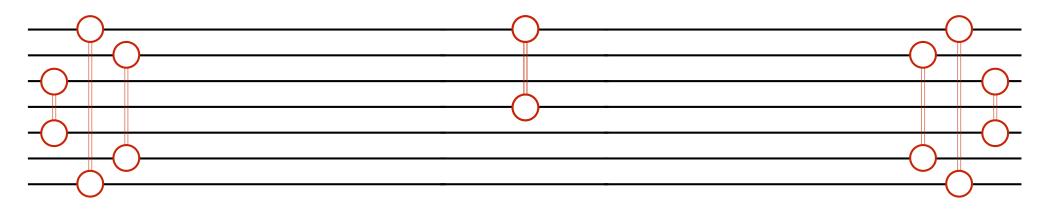


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]



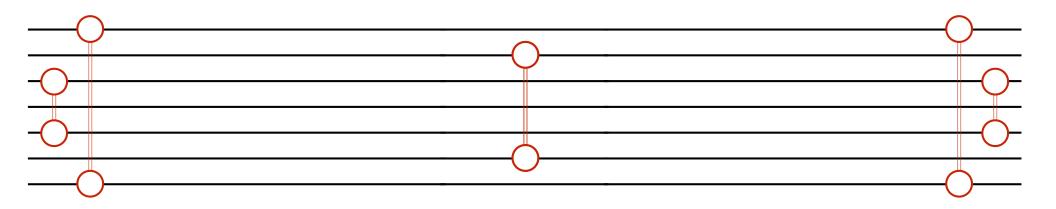
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0

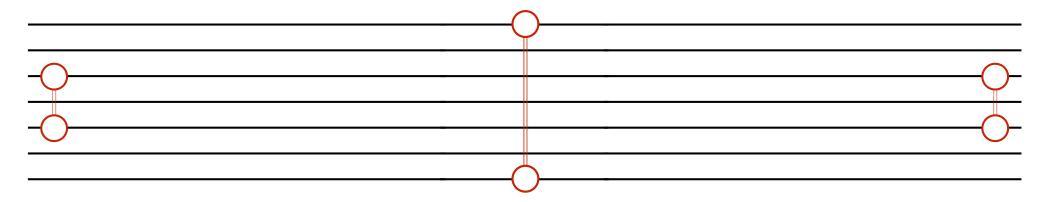


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

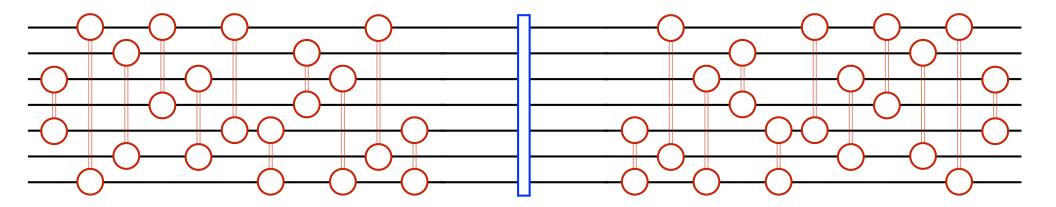


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

O
O

Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

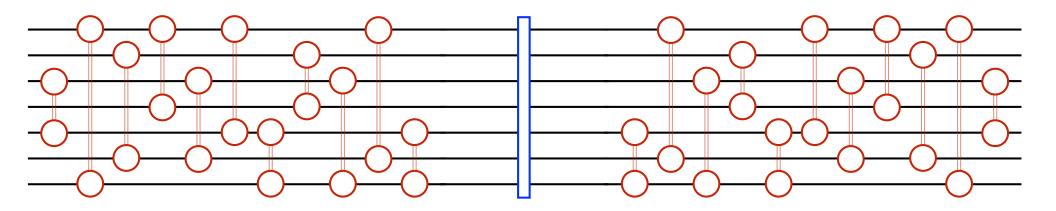
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0

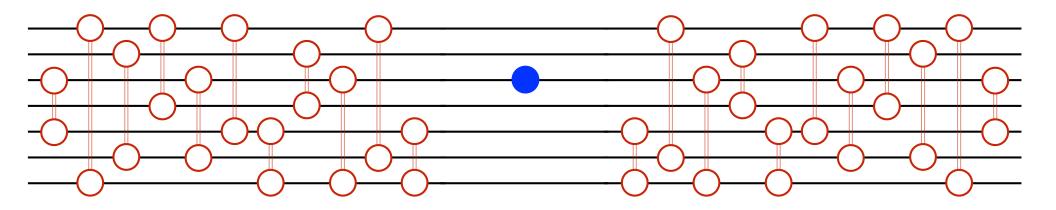
 $\bullet \mathbf{W} \equiv (\sigma_x)_3$



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

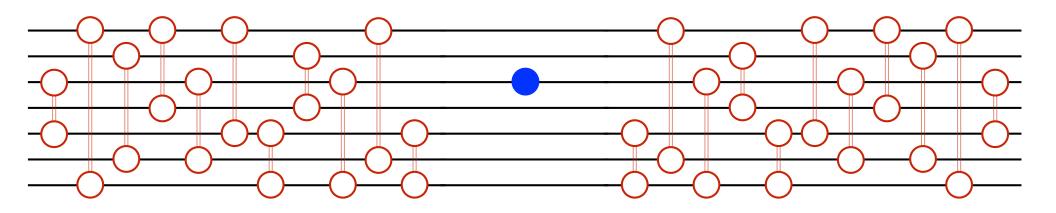
• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0

 $\bullet \mathbf{W} \equiv (\sigma_x)_3$



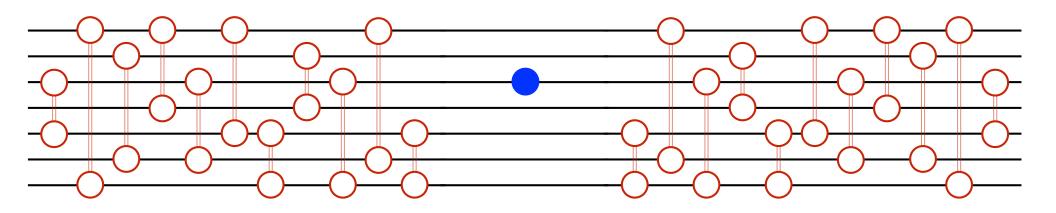
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



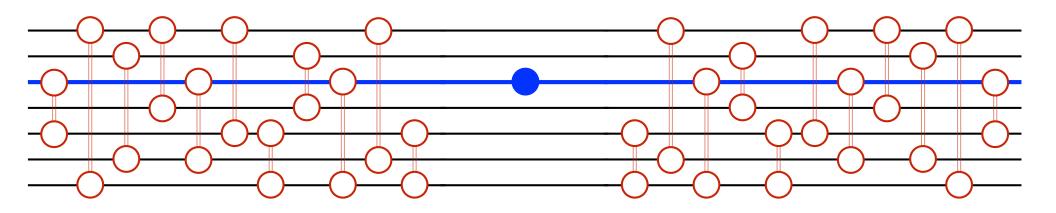
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



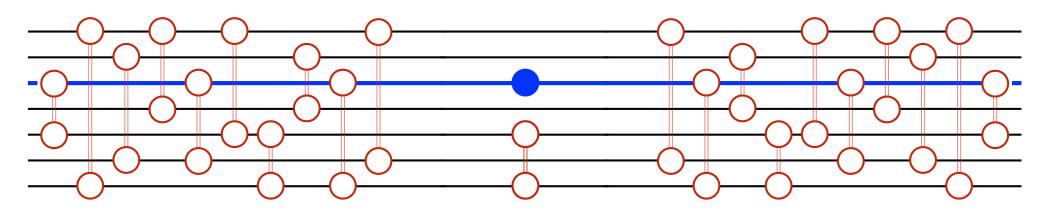
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



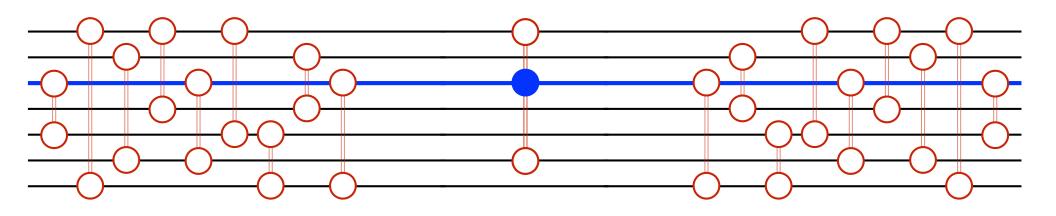
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



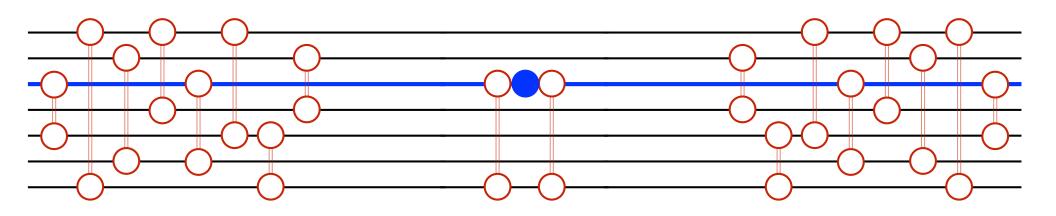
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



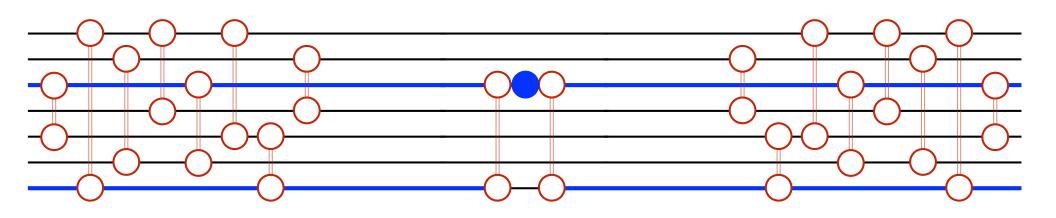
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



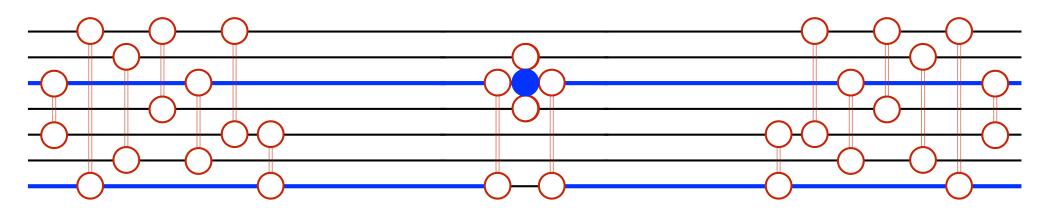
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



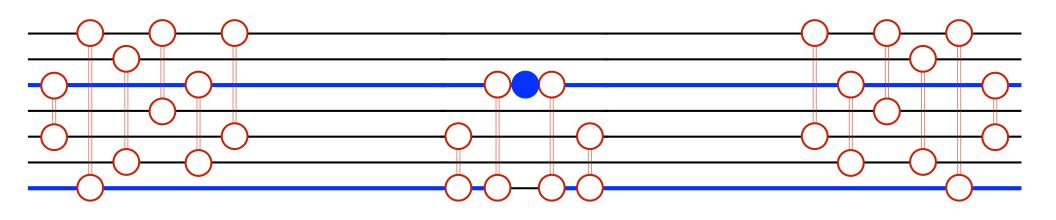
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



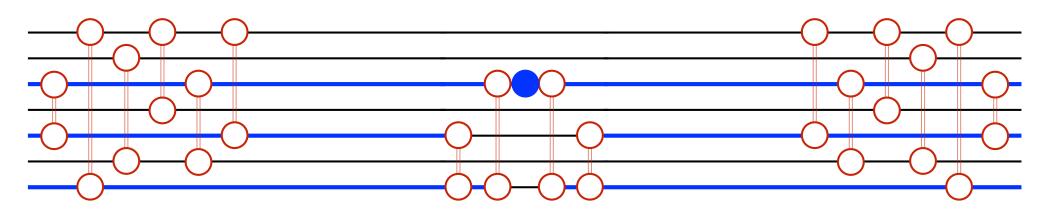
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



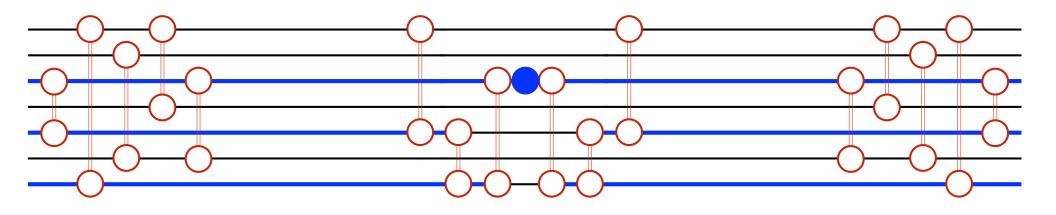
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



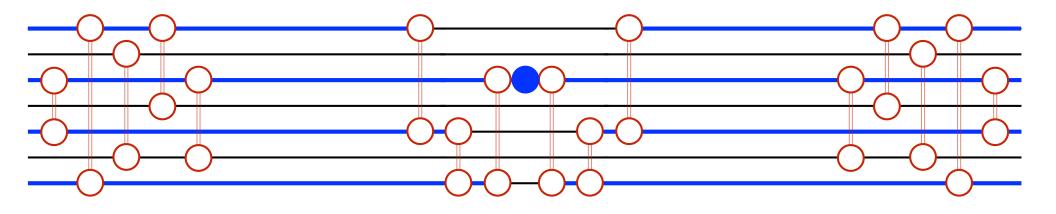
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



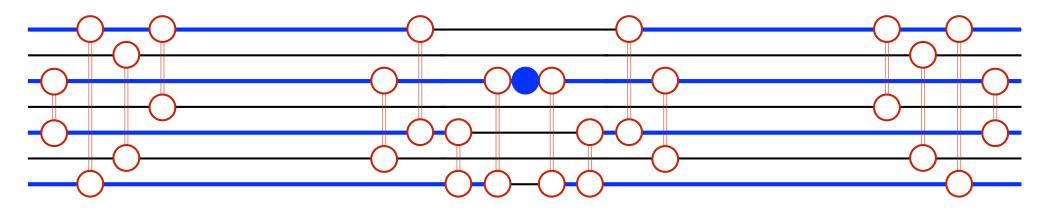
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



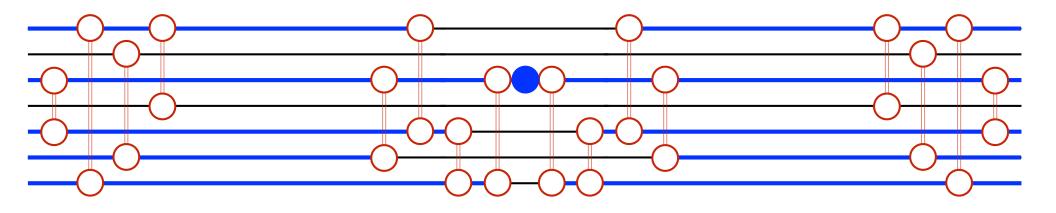
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



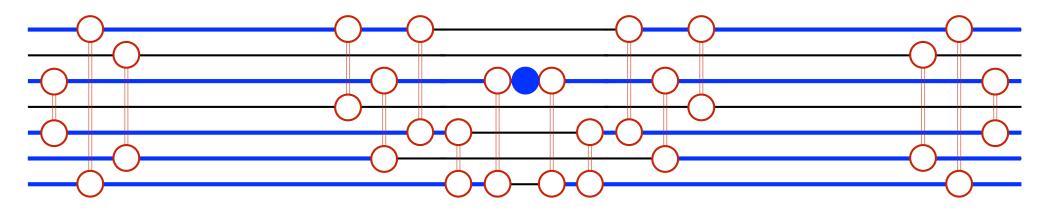
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



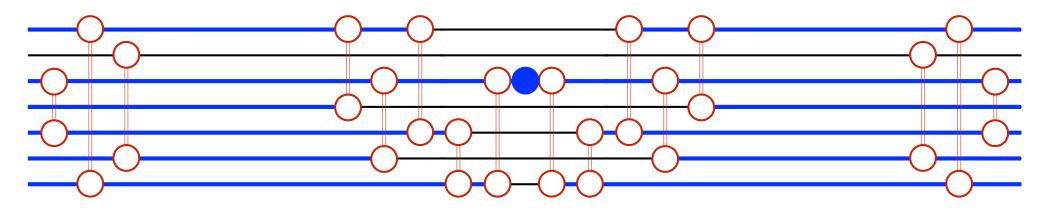
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



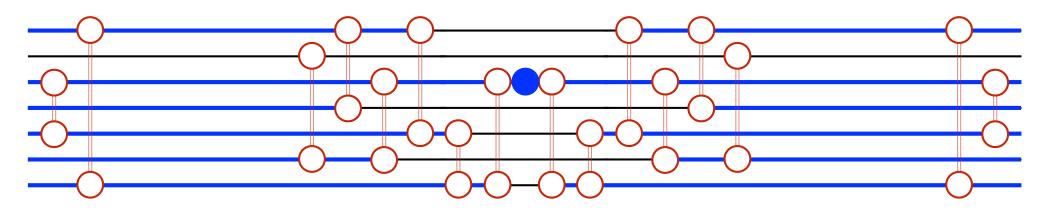
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



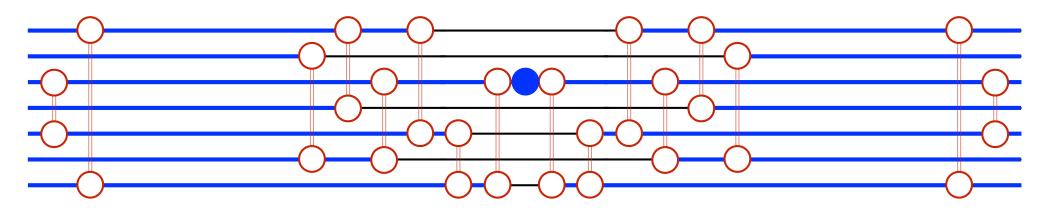
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



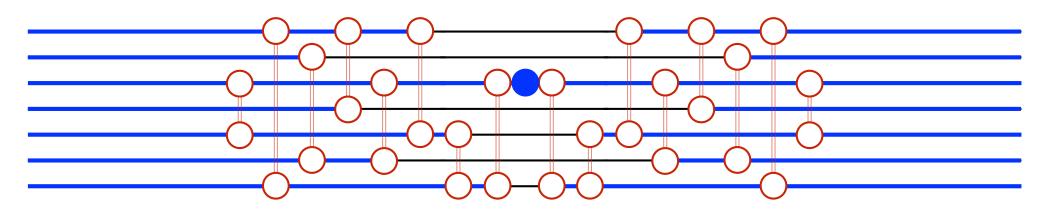
Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0



Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• W = I \longrightarrow complete cancellation Complexity[U(t). I. U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[I] = 0

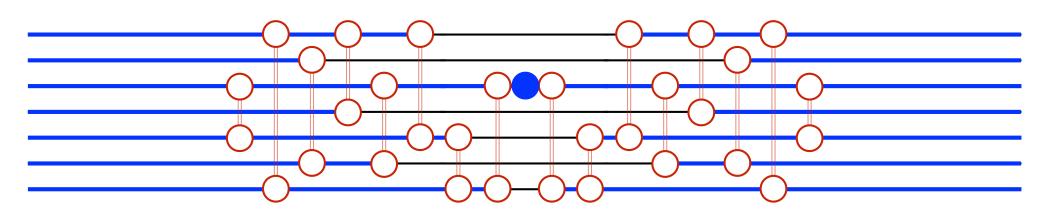


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• $W = \mathbb{I} \longrightarrow \text{complete cancellation}$ Complexity[U(t). \mathbb{I} . U(t)⁻¹] = C[U(t)U(t)⁻¹] = C[\mathbb{I}] = 0

• $W = (\sigma_x)_3 \longrightarrow$ partial cancellation Complexity[$U(t) (\sigma_x)_3 U(t)^1$] =

most qubits 'infected' at $t_* \equiv \frac{1}{2} N \log N$

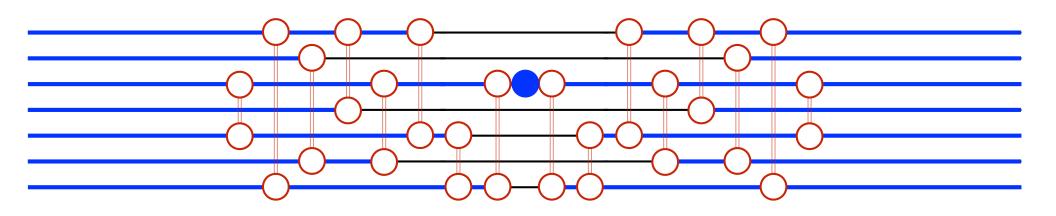


Complexity[U(t) W U(t)⁻¹] \leq C[U(t)] + C[W] + C[U(t)⁻¹]

• $W = (\sigma_x)_3$ \longrightarrow partial cancellation

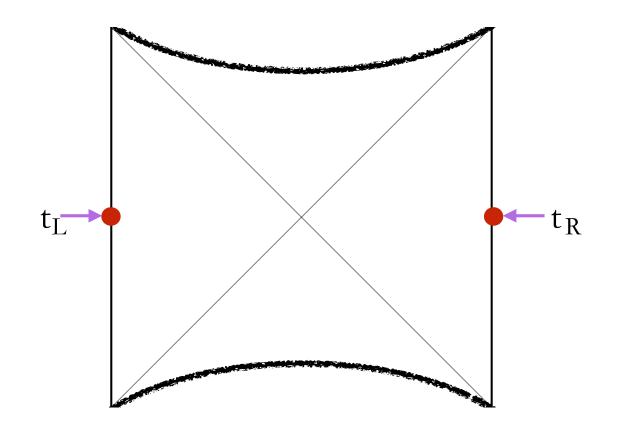
Complexity[$\mathbf{U}(\mathbf{t}) (\sigma_x)_3 \mathbf{U}(\mathbf{t})^{-1}$] = $C[\mathbf{U}(\mathbf{t})] + C[\mathbf{W}] + C[\mathbf{U}(\mathbf{t})^{-1}]$ - $N \log N$ \uparrow "switchback subtraction"

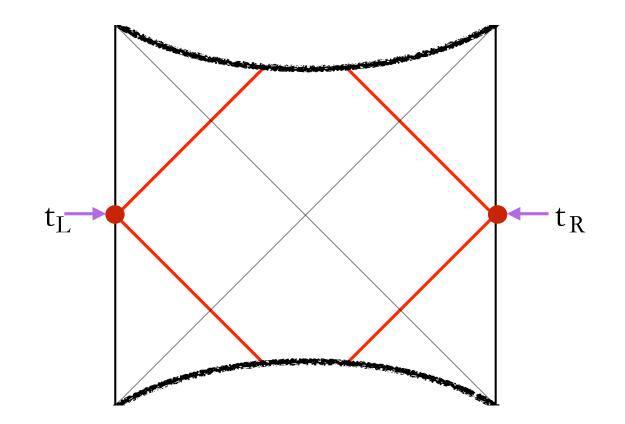
most qubits 'infected' at $t_* \equiv \frac{1}{2} N \log N$

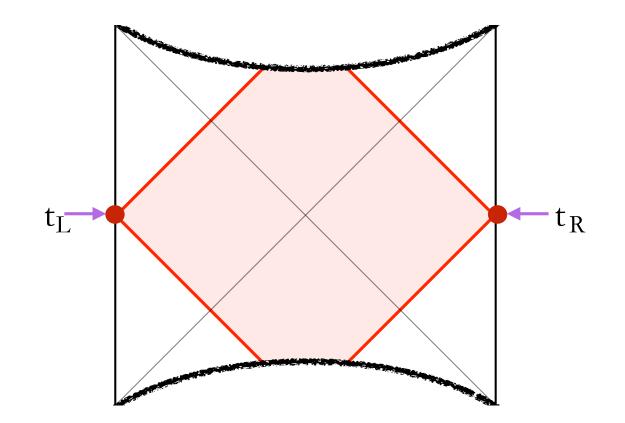


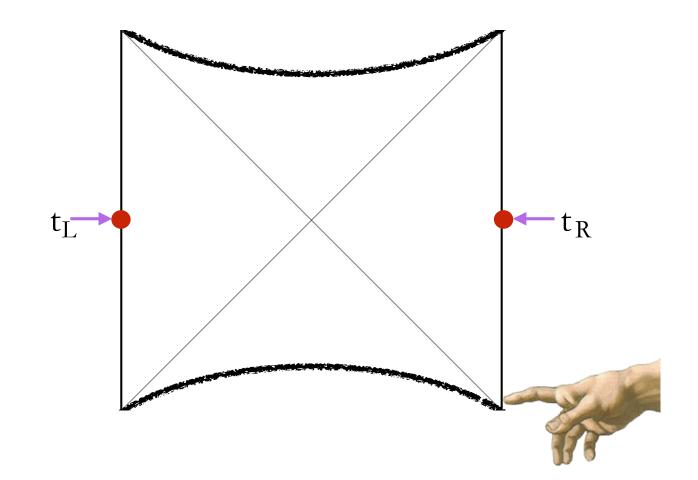
• $W = (\sigma_x)_3 \longrightarrow$ partial cancellation

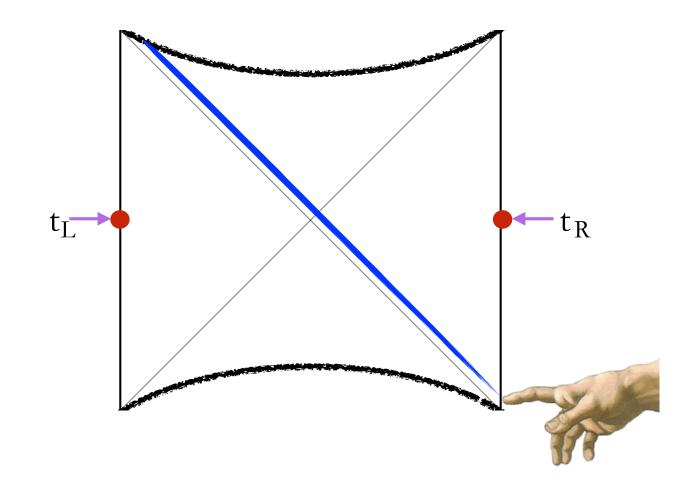
Complexity[$\mathbf{U}(\mathbf{t}) (\sigma_x)_3 \mathbf{U}(\mathbf{t})^1$] = $C[\mathbf{U}(\mathbf{t})] + C[\mathbf{W}] + C[\mathbf{U}(\mathbf{t})^1]$ - $N \log N$

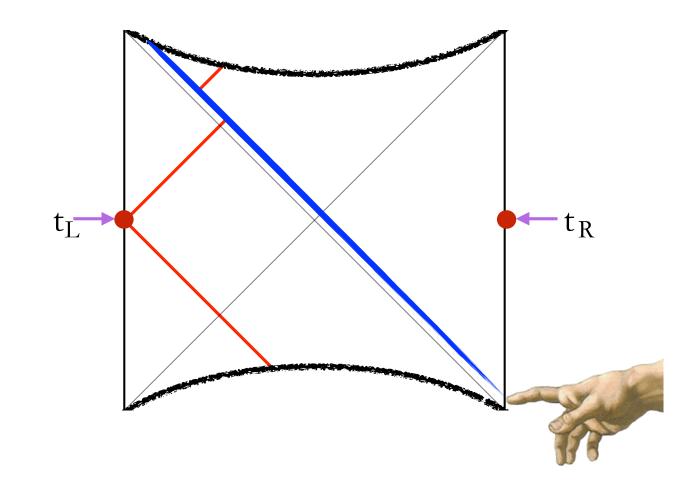


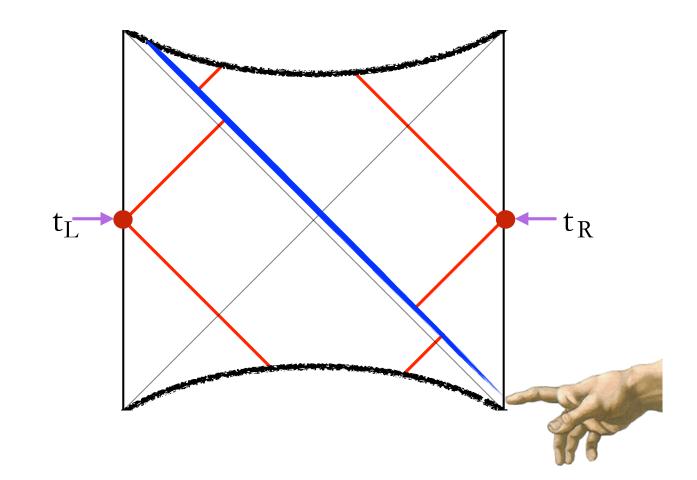


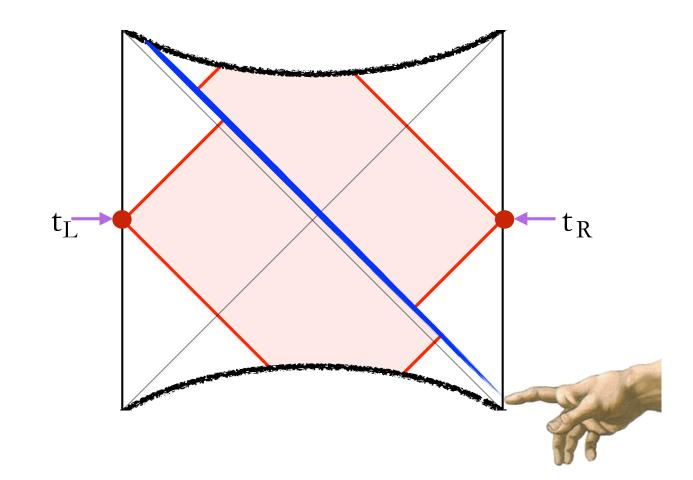












complexity ~ size of wormhole?

EVIDENCE:

• both expected to grow linearly (at early times)

- both can be exponentially large
- perturb black hole with boundary operator
 - in CFT, leads to increase in complexity (chaos)
 - in wormhole, leads to shockwave, increases size

the two increases match including delicate cancellations!

complexity ~ size of wormhole?

EVIDENCE:

• both expected to grow linearly (at early times)

- both can be exponentially large
- perturb black hole with boundary operator
 - in CFT, leads to increase in complexity (chaos)
 - in wormhole, leads to shockwave, increases size

the two increases match

including delicate cancellations!

• single/multiple/localized perturbations

complexity ~ size of wormhole?

EVIDENCE:

• both expected to grow linearly (at early times)

- both can be exponentially large
- perturb black hole with boundary operator
 - in CFT, leads to increase in complexity (chaos)
 - in wormhole, leads to shockwave, increases size

the two increases match

including delicate cancellations!

- single/multiple/localized perturbations
- entomb black hole in inert shell

Complexity and Geometry

FURTHER WORK:

- precise definition of complexity?
- precise definition of action?
- relate imprecision in two definitions?
- reference state? ("complexity of formation")
- classical proof that black holes maximize action?
- more general black holes?
- higher-derivative theories and singularities?
- quantum corrections in the bulk?
- principle of least computation?
- complexity and horizon transparency?
- lots of puzzles!

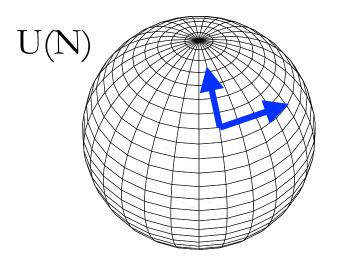
precise definition of complexity?

• OLD: number of gates

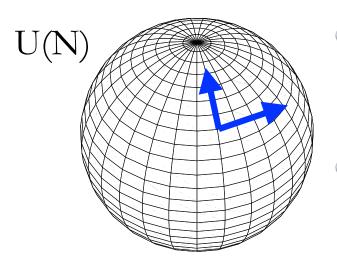
- need "tolerance"
- discontinuous
- arbitrary gate set

• OLD: number of gates

- need "tolerance"
- discontinuous
- arbitrary gate set
- NEW: complexity metric ("Nielsen geometry")

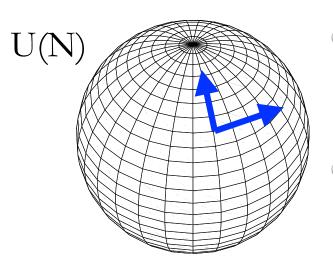


• NEW: complexity metric ("Nielsen geometry")



metric:
$$ds^2 = \operatorname{Tr}[dU^{\dagger}\sigma_I U] g_{IJ} \operatorname{Tr}[dU^{\dagger}\sigma_J U]$$
complete basis: $\sigma_I = \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \ldots$

• NEW: complexity metric ("Nielsen geometry")



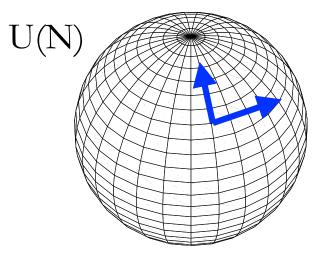
• metric:
$$ds^2 = \operatorname{Tr}[dU^{\dagger}\sigma_I U] g_{IJ} \operatorname{Tr}[dU^{\dagger}\sigma_J U]$$

• complete basis: $\sigma_I = \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \ldots$

• inner-product metric $\longrightarrow g_{IJ} = \delta_{IJ}$

• NEW: complexity metric ("Nielsen geometry")

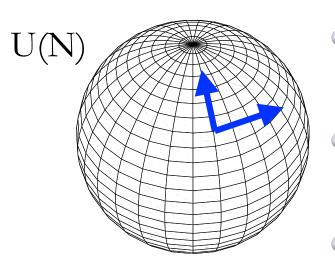
• metric: $ds^2 = \operatorname{Tr}[dU^{\dagger}\sigma_I U] g_{IJ} \operatorname{Tr}[dU^{\dagger}\sigma_J U]$ • complete basis: $\sigma_I = \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \begin{cases} \mathbb{I} \\ \sigma_x \\ \sigma_y \\ \sigma_z \end{cases} \otimes \ldots$



• inner-product metric $\longrightarrow g_{IJ} = \delta_{IJ}$

 complexity metric —> punish directions that touch more qubits (reward *k*-locality)

• NEW: complexity metric ("Nielsen geometry")

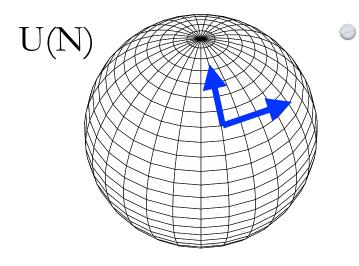


• metric:
$$ds^2 = \text{Tr}[dU^{\dagger}\sigma_I U] g_{IJ} \text{Tr}[dU^{\dagger}\sigma_J U]$$

• inner-product metric $\longrightarrow g_{IJ} = \delta_{IJ}$

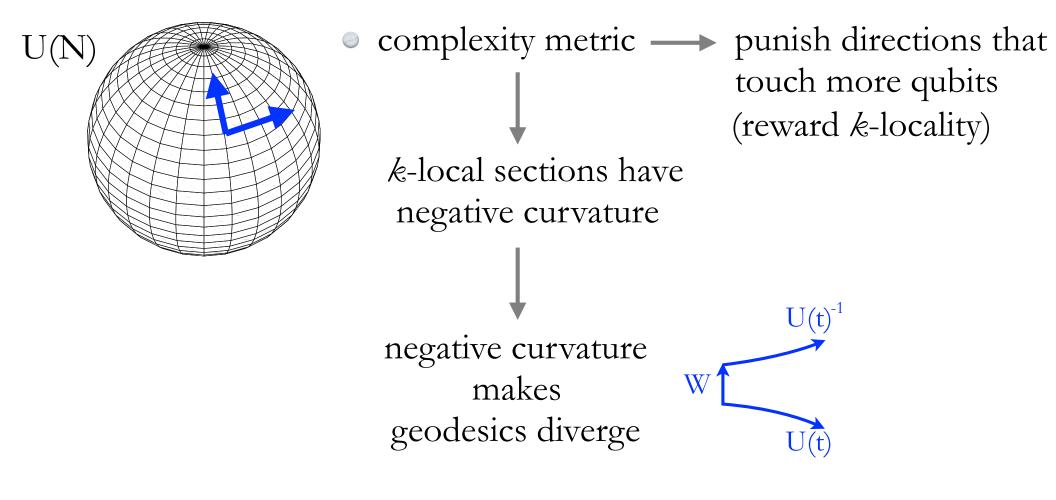
complexity metric --> punish directions that touch more qubits (reward *k*-locality)
 k-local sections have

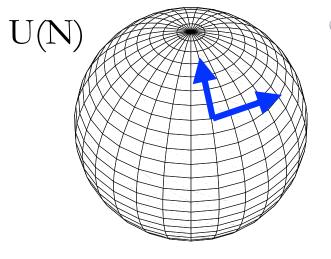
negative curvature



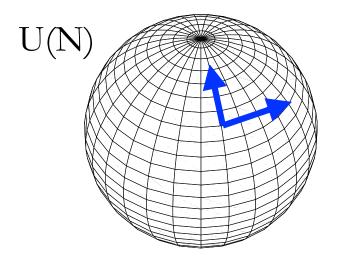
complexity metric ---> punish directions that touch more qubits (reward *k*-locality)

k-local sections have negative curvature

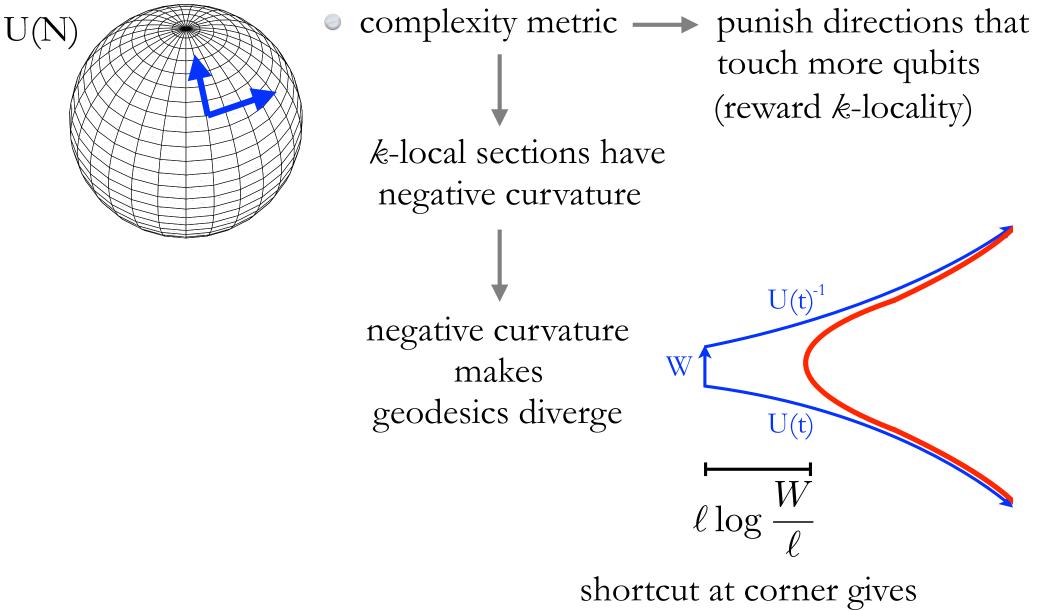




complexity metric — punish directions that touch more qubits (reward *k*-locality) k-local sections have negative curvature $U(t)^{-1}$ negative curvature W makes geodesics diverge U(t)



complexity metric — punish directions that touch more qubits (reward *k*-locality) k-local sections have negative curvature $U(t)^{-1}$ negative curvature W makes geodesics diverge U(t)



switchback subtraction

entropy \neq complexity

