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Experts agreed: 
moonshine proliferation is inevitable! 
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Moonshine news on both the physical and 
the mathematical front, at a conceptual and 
a technical level! 



Late 70’s ~Early 90’s, last century Est. 1869 Price   6d

Monstrous Moonshine
J and M. In 1973 a finite simple group of monstrous size was suspected
to exist. Its character table was computed in 1978, and it was soon
realised that it has a bizarre relation with the coefficients of the
canonical modular function, called J-invariant.

Member of the Asscoiated Press . 
Aenean commodo ligula eget dolor. 

Aenean. Aenean commodo ligula eget 
dolor. Aenhswse. Cejhciebce fcdcdcd.
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Monstrous Moonshine
The Monstrous Moonshine Conjecture of Conway-Norton (‘79)

states the existence of a Monster representation ♮ ♮such
that its graded character

Member of the Asscoiated Press . 
Aenean commodo ligula eget dolor. 

Aenean. Aenean commodo ligula eget 
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Late 70’s ~Early 90’s, last century Est. 1869 Price   6d

Monstrous Moonshine
The Theory. In 1984, Frenkel, Lepowsky and Meurman constructed ♮
by -orbifolding the c=24 chiral CFT constructed by 24 bosons on a
24-dimensional torus defined by the Leech lattice.

Member of the Asscoiated Press . 
Aenean commodo ligula eget dolor. 

Aenean. Aenean commodo ligula eget 
dolor. Aenhswse. Cejhciebce fcdcdcd.

Niemeier (1973): There are 24 
even, self-dual lattices in 24 
dimensions with a def. signature. 

{
(Leech Lattice)

(labelled by 23 ADE
root systems X)
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The FLM construction was verified 
by Borcherds in ’92 using ideas 
from string theory. 

The physical meaning of 
Borcherd’s proof is further 
illuminated by the work by 
Paquette-Persson-Volpato 
[2016-17], in terms of 
1-dim heterotic strings.  
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MOONSHINE REVIVAL WORLD EXCLUSIVES

MATHIEU AND UMBRAL 
MOONSHINE

K3 elliptic genus displays moonshine behavior! Recall that the non-
linear sigma model on K3 – the non-trivial CY 2-fold – is a N=(4,4) 
SCFT. The elliptic genus computes the BPS spectrum and is rigid. 
When decomposed into N=4 characters, we obtain a nice infinite q-
series that encodes representations of another sporadic group, ଶସ 
[Eguchi-Ooguri-Tachikawa, ‘10]
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MOONSHINE REVIVAL WORLD EXCLUSIVES

MATHIEU AND UMBRAL 
MOONSHINE

Mock modular property is another important feature of this q-series.

 

shadowmock 
modular form

Non-holom, 
transforms well



MOONSHINE REVIVAL WORLD EXCLUSIVES

MATHIEU AND UMBRAL 
MOONSHINE

Umbral Moonshine was found to be the natural generalisation of 
Mathieu moonshine. For each of the 23 Niemeier lattices ௑, the 
lattice symmetries define a finite group ௑, while the root system 
determines a vector of mock modular forms ௑

௥
௑ .                        

[MC-Duncan-Harvey, ‘13]
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MOONSHINE REVIVAL WORLD EXCLUSIVES

MATHIEU AND UMBRAL 
MOONSHINE
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Mathieu moonshine.  ଵ
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MOONSHINE REVIVAL WORLD EXCLUSIVES

MATHIEU AND UMBRAL 
MOONSHINE

The Umbral Moonshine Conjecture states the existence of the 
natural ௑-representations that whose graded character coincides 
with some specific mock modular form ௚

௑
௚,௥
௑ ௑. 
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Part II
Umbral Moonshine (UM)

and K3 String Theory



All cases of UM related to K3 string theory
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For all 23 

EG of corresponding
ADE singularities

Contribution from the mmf

[MC-Harrison ‘14] 
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All cases of UM related to K3 string theory
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for some point in the moduli space

What are the symmetry groups* of SM(K3)?
* : we restrict to sym. preserving (4,4) susy. 

[Gaberdiel-Hohenegger-Volpato ‘11] 

subgroups fixing pointwise a 4-dim subspace in 

: relevant for SM(K3)



Charged Conway Moonshine and EG(K3)

ಽ

Charging ♮: build current from 4 of the 24 fermions, 
add fugacity. 

Charged P.F. = 

[Duncan-MackCrane ‘15]

Charged ♮



How do the symmetry groups act on SM(K3)?

equivalent for SM(K3) conjugate under T-
duality group 

• Classifying conjugate classes of at most 81 
distinct (physical) at can be realised at a given point 
of mod. spc.

• 56 have been explicited realised in actual SM(K3) computations. 

[MC-Harrison-Volpato-Zimet ‘16]

• From UM & Co-moonshine we obtain 69 distinct (fictious) 
elligible twining functions ಽ. 



How do the symmetry groups act on SM(K3)?
A : dicated by moonshine! 

From UM & Co-moonshine we obtain 69 distinct (fictious) elligible 
twining functions ಽ. These are in fact all there & all there is
for all SM(K3)s! [Conjectured in MC-Harrison-Volpato-Zimet ’16 

proven in Paquette-Volpato-Zimet ‘17]

: physical twinings
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UM Modules So Far … 8 out of 23

max. dim. 
Irrep.

2
3
1
3
2
1
1
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UM Modules So Far … 8 out of 23

max. dim. 
Irrep.

2
3
1
3
2
1
1
30

[Duncan-O‘Desky, MC-Duncan ‘17]

= P.F. of chiral ghost CFT

ల

[Zwegers ‘05, 
Dabolkar-Murthy-Zagier ‘12] 



UM Modules So Far … 8 out of 23

max. dim. 
Irrep.

2
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1
3
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1
1
30

[Anagiannis-MC-Harrison ‘17]
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Build a ghosts + fermion orbifold
which gives



moonshine

Stringy K3 sym.

Umbral Groups
ࢄ

EG(K3)

1. Combining sym at different 
points in mod. space?

2. Down to lower dim?
3. Reduce susy?  

[Gaberdiel, Kachru, Keller, Ooguri, Paquette, Paul, Taormina, Volpato, Wendland, … ‘16-’17]



Part III
Moonshine Proliferation

• New examples keep appearing.
• A Paradigm Shift: the New Order? 



Some Examples of New Moonshine Cases



New Moonshine on M5 Branes
An M5 branes on divisor is described by an effective 
“MSW String”, an N=(0,4) SCFT. Define generalised EG:

బ బ 

E.g.

మ

a mock modular form Hurwitz class number

[Vafa-Witten ‘94]

[MC-Duncan-Mertens ??]

[Maldacena-Strominger-
Witten ‘97]



New Moonshine on M5 Branes

E.g.

మ

a modular form

[Minahan-Nemeschansky-Vafa-Warner ‘98]



Connections between modular objects and finite groups seem 
more common if we allow for the following new features: 

1. Group rep’s come with signs: 

೔,೙

2. The functions are no longer determined uniquely by 
modularity and pole structure; there are cusp forms to add.

New Paradigm: Is this Moonshine?

A much more flexible game! 



Modular 
Functions

♮
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Umbral Groups

EG(K3)

z

What’s the landscape? What’s the Physics?



Modular 
Functions
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Umbral Groups

EG(K3)

z

What’s the landscape? What’s the Physics?

THANK YOU! 


