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ẋµ

+�

i

ẏi
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Motivation

Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.
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Motivation

Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Gauge/string correspondence
Main merit: allows studying regimes not accessible via standard analytical tools.
Beautiful recent progress within AdS/CFT: for relevant gauge theory observables
as Wilson loops (i.e. minimal string surfaces)

hW [C]i ⌘ Zstring

��
C ⇠ e�Area

reg

exact results can be obtained

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Motivation

Superstrings in AdS backgrounds with RR fluxes: complicated interacting 2d field
theory which may be subtle also perturbatively.

Call for genuine 2d QFT to cover the finite-coupling region.

Lattice techniques in AdS/CFT:
exciting program on the 4d susy CFT side,
subtleties with supersymmetry,
control on the perturbative region.
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Lattice field theory methods in AdS/CFT

Consolidated program on 4d CFT side,
subtleties with supersymmetry,
control on the perturbative region. Lattice 4d  
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[Catterall, Damgaard, DeGrand, Giedt, Schaich…]

Lattice QFT methods in AdS/CFT

Consolidated program on 4d CFT side,
subtleties with supersymmetry,
control on the perturbative region.



[previous study: Roiban McKeown 2013]
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Motivation

Talks by Shaich, Giedt, Anosh
Lattice for superstring world-sheet
in AdS5 ⇥ S5

Features:

I 2d: computationally cheap
I no supersymmetry (only in target space!)
I all gauge symmetries are fixed, only scalar fields

Non-trivial 2d qft with strong coupling analytically known,
finite-coupling (numerical) prediction.

Lattice 4d  
N=4 SYM 

Lattice QFT methods in AdS/CFT

Consolidated program on 4d CFT side,
subtleties with supersymmetry,
control on the perturbative region.



Green-Schwarz string action in AdS
5

⇥ S5 + RR flux

Symmetries:
I global PSU(2, 2|4), local bosonic (diffeomorphism) and fermionic (-symmetry)
I classical integrability

manifest for �-model on G/H =

PSU(2,2|4)
SO(1,4)⇥SO(5) .

Explicitly

S = g

Z
d⌧d�

⇥
@aX

µ@aX⌫ Gµ⌫ +

¯✓ � (D + F5 ) ✓ @X +

¯✓ @✓ ¯✓ @✓ + . . .
⇤

Quantized semiclassically

X = Xcl +
˜X �! � = g

h
�0 +

�1

g
+

�2

g2
+ . . .

i

Formally power-counting non-renormalizable, judicious choice of regularization
is needed to verify UV finiteness.

[Metsaev Tseytlin 1998]



The cusp anomaly of N = 4 SYM from string theory

Completely solved via integrability.

Expectation value of a light-like cusped Wilson loop
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Previous study

Minimal surface (Xcusp)
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ending on a null cusp, since x+x�
= 0 at the boundary z = 0.

Perturbatively

[Giombi Ricci Roiban Tseytlin 2009]
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[Frolov Tseytlin 02]

�-model respectively), analytic calculations are available for the scaling function
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RM could guarantee that what they plotted is f(g) only because (as referred by

Roiban) they could compare with the strong coupling results in (1.6), as in Table 2

(again, at small g the agreement is far from being good, see Table 3).

• The background here is not the trivial one. There is also in principle no guarantee that

the cusp solution - which is a saddle point - also represents a minimum. That is why

(referring to Figure 1) starting with a lower value [as Mattia did] it could mean that

one encounters other states with lower energy and does not thermalizes to the state one

hope for, but to another one with lower energy. Again, it is only because EM had a

good fit with (1.6) that they were sure it was the cusp they were calculating.

2 Remarks

• [Roiban email:] The quantity that is of interest (here) is the log of the partition func-

tion which is also the e↵ective action. The way the calculation proceeds, one generates

classical field configurations and then randomly accepts of rejects them. For each of

the accepted ones one should evaluate e�S

and then average them and take the log. So

for each data point, computing lnZ or S is the same. The potential issue related to

averaging. The fact that the field configurations that are generated are distributed on

a gaussian says that no matter what function that is evaluated on them, the result will

also be distributed on a Gaussian. Since the log is a monotonic function, if the errors

3

[Bern et al. 2006]

[Giombi et al. 2009]
[Gubser Klebanov Polyakov 02]
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charges 1 and �1 respectively) while the zM are neutral. The invariance of the action simply

requires the fermions ⌘i and ✓i to have charge 1

2

and consequently ⌘i and ✓i acquire charge

�1

2

. An optimal discretization should preserve the full global symmetry of the model. In

Section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the e↵ective

action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory, obtaining

for the cusp anomaly (K is the Catalan constant)

f(g) = 4 g
⇣

1� 3 log 2

4⇡ g
� K

16⇡2 g2
+O(g�3)

⌘

. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-relativistic)

dispersion relation for the field excitations over the classical string surface. For example, the

corrections to the masses of the bosonic fields x, x⇤ in (2.1) (defined as the values of energy

at vanishing momentum) read [9]

m2
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m2
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⇣

1� 1

8 g
+O(g�2)

⌘

, (2.4)

where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and

(2.4) are results obtained in a dimensional regularization scheme in which power divergent

contributions are set to zero. In what follows, we will compute the lattice correlators of the

fields x, x⇤ so to study whether our discretization changes the renormalization pattern above.

While the bosonic part of (2.1) can be easily discretized and simulated, Graßmann-odd

fields are either ignored (quenched approximation) or formally integrated out, letting their

determinant become part - via exponentiation in terms of pseudofermions, see (2.9) below

- of the Boltzmann weight of each configuration in the statistical ensemble. In the case of

higher-order fermionic interactions – as in (2.1), where they are at most quartic – this is

possible via the introduction of auxiliary fields realizing a linearization. Following [33], one

introduces 7 auxiliary fields, one scalar � and a SO(6) vector field �M , with the following

Hubbard-Stratonovich transformation
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dtds
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Above, in the second line we have written the Lagrangian for �M so to emphasize that it has

an imaginary part. Indeed, the bilinear form in round brackets is hermitian

⇣

i ⌘i⇢
MNi

j⌘
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= �i(⌘j)†(⇢MNi
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MNj
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i , (2.6)

as follows from the properties of the SO(6) generators (A.13). Since the auxiliary vector

field �M has real support, the Yukawa-term for it sets a priori a phase problem 10, the only

10In other words, the second quartic interaction in (2.5) is the square of an hermitian object and comes

in the exponential as a “repulsive” potential. This has the final e↵ect of an imaginary part in the auxiliary

Lagrangian, precisely as the i b x in e�
b2

4a ⇠ R
dx e�ax

2
+ibx, with b 2 R.
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Green-Schwarz string in the null cusp background

The (AdS lightcone) gauge-fixed action for fluctuations above the null cusp is

I 8 bosonic coordinates: x, x⇤, zM (M = 1, · · · , 6), z =

p
zMzM ;

I 8 fermionic variables, ✓i = (✓i)†, ⌘i = (⌘i)†, i = 1, 2, 3, 4

transforming in the fundamental of SU(4)

I ⇢M are off-diagonal blocks of SO(6) Dirac matrices �M ⌘
✓

0 ⇢†M
⇢M 0

◆

and ⇢M are off-diagonal blocks of SO(6) Dirac matrices �M ⌘
✓

0 ⇢†M
⇢M 0

◆
.

Manifest global symmetry is SO(6)⇥ SO(2).

[Giombi Ricci Roiban Tseytlin 2009]

2 The model in the continuum and its linearization

In the continuum, the AdS
5

⇥S5 superstring “cusp” action, which describes quantum fluctu-

ations above the null cusp background can be written after Wick-rotation as [8]
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Above, x, x⇤ are the two bosonic AdS
5

(coordinate) fields transverse to the AdS
3

subspace of

the classical solution. Together with zM (M = 1, · · · , 6) (z =
p

zMzM ), they are the bosonic

coordinates of the AdS
5

⇥ S5 background in Poincaré parametrization remaining after fixing

a “AdS light-cone gauge” [42, 43]. In Appendix A we briefly review the steps leading to the

action (2.1). The fields ✓i, ⌘i, i = 1, 2, 3, 4 are 4+4 complex anticommuting variables for which

✓i = (✓i)†, ⌘i = (⌘i)†. They transform in the fundamental representation of the SU(4) R-

symmetry and do not carry (Lorentz) spinor indices. The matrices ⇢Mij are the o↵-diagonal

blocks of SO(6) Dirac matrices �M in the chiral representation

�M ⌘
 

0 ⇢†M
⇢M 0

!

=

 

0 (⇢M )ij

(⇢M )ij 0

!

(2.2)

The two o↵-diagonal blocks, carrying upper and lower indices respectively, are related by

(⇢M )ij = �(⇢Mij )
⇤ ⌘ (⇢Mji )

⇤, so that indeed the block with upper indices, denoted (⇢†M )ij , is

the conjugate transpose of the block with lower indices. (⇢MN ) j
i = (⇢[M⇢†N ]) j

i and (⇢MN )ij =

(⇢†[M⇢N ])ij are the SO(6) generators.

In the action (2.1), as standard in the literature, the light-cone momentum has been con-

sistently set to the unitary value, p+ = 1. Clearly, in the perspective adopted here it is crucial

to keep track of dimensionful quantities, which are in principle subject to renormalization. In

the following we will make explicit the presence of one massive parameter, defined as m, as

well as its dimensionless counterpart M = am. The latter and the (dimensionless) g are the

only “bare” parameters characterizing the model in the continuum.

In (2.1), local bosonic (di↵eomorphism) and fermionic (-) symmetries originally present

in the Type IIB superstring action on AdS
5

⇥ S5 [44] have been fixed in a “AdS light-

cone gauge” [42, 43]. On the other hand two important global symmetries are explicitly

realized. The first one is the SU(4) ⇠ SO(6) symmetry originating from the isometries of

S5, which is una↵ected by the gauge fixing. Under this symmetry the fields zM change in

the 6 representation (vector representation), the fermions {⌘i, ✓i} and {⌘i, ✓i} transform in

the 4 and ¯

4 (fundamental and anti-fundamental) respectively, whereas the fields x and x⇤ are

simply neutral. The second global symmetry is a SO(2) ⇠ U(1) arising from the rotational

symmetry in the two AdS
5

directions orthogonal to AdS
3

(i.e. transverse to the classical

solution) and therefore, contrary to the previous case, the fields x and x⇤ are charged (with
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Lattice QFT basics

Discretize Euclidean worldsheet in a grid of lattice spacing a, size L = N a.

Fields � ⌘ �n defined at ⇠ = (an1, an2) ⌘ an.

a) natural cutoff �⇡
a
< pµ  ⇡

a

b) path integral measure [D�] =
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n d�n.

Then
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Z
.
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Linearization and discretization: first setting

The relevant (gauge-fixed) action has quartic fermionic interactions

To formally integrate out Graßmann-odd fields, P [�i] =
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charges 1 and �1 respectively) while the zM are neutral. The invariance of the action simply

requires the fermions ⌘i and ✓i to have charge 1

2

and consequently ⌘i and ✓i acquire charge

�1

2

. An optimal discretization should preserve the full global symmetry of the model. In

Section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the e↵ective

action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory, obtaining

for the cusp anomaly (K is the Catalan constant)

f(g) = 4 g
⇣

1� 3 log 2

4⇡ g
� K

16⇡2 g2
+O(g�3)

⌘

. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-relativistic)

dispersion relation for the field excitations over the classical string surface. For example, the

corrections to the masses of the bosonic fields x, x⇤ in (2.1) (defined as the values of energy

at vanishing momentum) read [9]

m2

x(g) =
m2

2

⇣

1� 1

8 g
+O(g�2)

⌘

, (2.4)

where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and

(2.4) are results obtained in a dimensional regularization scheme in which power divergent

contributions are set to zero. In what follows, we will compute the lattice correlators of the

fields x, x⇤ so to study whether our discretization changes the renormalization pattern above.

While the bosonic part of (2.1) can be easily discretized and simulated, Graßmann-odd

fields are either ignored (quenched approximation) or formally integrated out, letting their

determinant become part - via exponentiation in terms of pseudofermions, see (2.9) below

- of the Boltzmann weight of each configuration in the statistical ensemble. In the case of

higher-order fermionic interactions – as in (2.1), where they are at most quartic – this is

possible via the introduction of auxiliary fields realizing a linearization. Following [33], one

introduces 7 auxiliary fields, one scalar � and a SO(6) vector field �M , with the following

Hubbard-Stratonovich transformation
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dtds
h

� 1

z2

�

⌘i⌘i
�

2

+
⇣

i
z2
zN⌘i⇢

MNi
j⌘

j
⌘

2

i

} (2.5)

⇠
Z

D�D�M exp
n

� g

Z

dtds [1
2

�2 +
p
2

z � ⌘2 + 1

2

(�M )2 � i
p
2

z2
�M

�

i
z2
zN⌘i⇢

MNi
j⌘

j
�

]
o

.

Above, in the second line we have written the Lagrangian for �M so to emphasize that it has

an imaginary part. Indeed, the bilinear form in round brackets is hermitian

⇣

i ⌘i⇢
MNi

j⌘
j
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= �i(⌘j)†(⇢MNi
j)

⇤(⌘i)
† = �i⌘j ⇢

MN
i
j ⌘i = i⌘j ⇢

MNj
i ⌘

i , (2.6)

as follows from the properties of the SO(6) generators (A.13). Since the auxiliary vector

field �M has real support, the Yukawa-term for it sets a priori a phase problem 10, the only

10In other words, the second quartic interaction in (2.5) is the square of an hermitian object and comes

in the exponential as a “repulsive” potential. This has the final e↵ect of an imaginary part in the auxiliary

Lagrangian, precisely as the i b x in e�
b2

4a ⇠ R
dx e�ax

2
+ibx, with b 2 R.
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Four-fermion interactions
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+7 bosonic auxiliary fields �, �M (M = 1, · · · , 6)

I L
aux

is not hermitian, e�
b

2

4 a

=

R

dx e�a x2

+i b x , b 2 R.

and ⇢M are off-diagonal blocks of SO(6) Dirac matrices �M ⌘
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.

Manifest global symmetry is SO(6)⇥ SO(2).
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charges 1 and �1 respectively) while the zM are neutral. The invariance of the action simply

requires the fermions ⌘i and ✓i to have charge 1

2

and consequently ⌘i and ✓i acquire charge

�1

2

. An optimal discretization should preserve the full global symmetry of the model. In

Section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the e↵ective

action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory, obtaining

for the cusp anomaly (K is the Catalan constant)
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. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-relativistic)

dispersion relation for the field excitations over the classical string surface. For example, the

corrections to the masses of the bosonic fields x, x⇤ in (2.1) (defined as the values of energy

at vanishing momentum) read [9]
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where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and

(2.4) are results obtained in a dimensional regularization scheme in which power divergent

contributions are set to zero. In what follows, we will compute the lattice correlators of the
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Green-Schwarz string in the null cusp background

After linearization the Lagrangian reads (m ⇠ P+)
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question being whether the latter is treatable via standard reweighting. Below we will see

that this is not the case for small values of g, suggesting that a di↵erent setting (alternative

linearization) should be provided to explore the full nonperturbative region.
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Notice that (2.7) and the integration measure involve only the field  and not its complex

conjugate 11, thus formally integrating out generates a Pfa�an Pf OF rather than a determi-

nant. In order to enter the Boltzmann weight and thus be interpreted as a probability, Pf OF

should be positive definite. For this reason, we proceed as in [33]
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where the second equivalence obviously ignores potential phases or anomalies.

3 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (2.7), we introduce a two-dimensional

grid with lattice spacing a. We assign the values of the discretised (scalar) fields to each

lattice site, with periodic boundary conditions for all the fields except for antiperiodic tem-

poral boundary conditions in the case of fermions. The discrete approximation of continuum

derivatives are finite di↵erence operators defined on the lattice. While this works well for the

bosonic sector, a Wilson-like lattice operator must be introduced such that fermion doublers

are suppressed. Due to the rather non-trivial structure of the Dirac-like operator in (2.8)

there are in principle many possible ways of introducing a Wilson-like operator. An optimal

discretization should preserve all the symmetries of the continuum action and should lead

to lattice perturbative calculations reproducing, in the a ! 0 limit, the continuum behavior

(2.3). Furthermore, in order not to prevent Montecarlo simulations the discretization should

11The vector  in (2.7) collects the 8 complex ✓ and ⌘ in a formally “redundant” way which includes both

the fields and their complex conjugates. Explicitating real and imaginary parts of ✓, ⌘, it is easy to see that the

fermionic contribution coming from this 16⇥16 complex operator O
F

is then the one of 16 real anti-commuting

degrees of freedom.
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question being whether the latter is treatable via standard reweighting. Below we will see

that this is not the case for small values of g, suggesting that a di↵erent setting (alternative

linearization) should be provided to explore the full nonperturbative region.
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Notice that (2.7) and the integration measure involve only the field  and not its complex

conjugate 11, thus formally integrating out generates a Pfa�an Pf OF rather than a determi-

nant. In order to enter the Boltzmann weight and thus be interpreted as a probability, Pf OF

should be positive definite. For this reason, we proceed as in [33]
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where the second equivalence obviously ignores potential phases or anomalies.

3 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (2.7), we introduce a two-dimensional

grid with lattice spacing a. We assign the values of the discretised (scalar) fields to each

lattice site, with periodic boundary conditions for all the fields except for antiperiodic tem-

poral boundary conditions in the case of fermions. The discrete approximation of continuum

derivatives are finite di↵erence operators defined on the lattice. While this works well for the

bosonic sector, a Wilson-like lattice operator must be introduced such that fermion doublers

are suppressed. Due to the rather non-trivial structure of the Dirac-like operator in (2.8)

there are in principle many possible ways of introducing a Wilson-like operator. An optimal

discretization should preserve all the symmetries of the continuum action and should lead

to lattice perturbative calculations reproducing, in the a ! 0 limit, the continuum behavior

(2.3). Furthermore, in order not to prevent Montecarlo simulations the discretization should

11The vector  in (2.7) collects the 8 complex ✓ and ⌘ in a formally “redundant” way which includes both

the fields and their complex conjugates. Explicitating real and imaginary parts of ✓, ⌘, it is easy to see that the

fermionic contribution coming from this 16⇥16 complex operator O
F

is then the one of 16 real anti-commuting

degrees of freedom.
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Manifest global symmetry is SO(6)⇥ SO(2).
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The phase

Re(ei✓)

number of configs

We mentioned that it may be treated via reweighting as long as hei✓i is non vanishing.

hAi = hA ei✓i✓=0

hei✓i✓=0

At very strong coupling the real part of the phase has a flat distribution

Dedicated algorithms: active field of study, no general proof of convergence.

g=30 g=5 g=1
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Alternative linearization

Consider a simple SO(4) invariant four-fermion interaction

L4F =

1

2

✏abcd  
a
(x) b

(x) c
(x) d

(x) ⌘ ⌃

ab e
⌃

ab

where ⌃

ab
=  a b , e

⌃

ab
=

1
2 ✏abcd  

c  d. Introducing ⌃

ab
± =

1
2

⇣
⌃

ab ± e
⌃

cd
⌘

, rewrite

L4F = ± 2

⇣
⌃

ab
±
⌘2

just exploiting the Graßmann character of the underlying fermions.

[Catterall 2015]
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Alternative linearization

In our case, (⇢M )

im
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= 2✏imkn, we analogously rewrite
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j
i

Choosing the good sign (�), new set of 1 + 16 real auxiliary fields
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5 = ��5)
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ensure positive-definite determinant (PfOF )
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Gain in computational costs, but PfOF = ±p
detOF .



c
2

1
g

�
min

�
min

In continuum perturbation theory dim. reg. set them to zero.
Here, expected mixing of the Lagrangian with lower dimension operator

O(�(s))r =

X

↵:[O
↵

]D

Z↵ O↵(�(x)) , Z↵ ⇠ ⇤

(D�[O
↵

])⇠ a�(D�[O
↵

])

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

12

14

1/N

<
�
m

in
>

/�
m

in

g = 10, r = 1
g = 30, r = 1
g = 25, r = 0
g = 50, r = 0

c
2

1
g

�
min

�
min

1
N

In continuum perturbation theory dim. reg. set them to zero.
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Where are we sign-problem free?

Check of exact predictions based on integrability and localization
and check of quantum consistency (UV finiteness) of certain string actions.

Eigenvalue distribution of fermionic operators well separated from zero,
no sign problem for g � 10, where nonperturbative physics is captured.
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In the continuum, the free kinetic part of the fermionic operator

with  ⌘ (✓i, ✓i, ⌘i, ⌘i) and

OF =
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where

Ai
j =

1p
2z2

�M⇢
MNi

jzN � 1p
2z
� �ij + i

zN
z2
⇢MNi

j @tz
M , (2.7)

A†
i
j = � 1p

2z2
�M⇢

MN
i
jzN � 1p

2z
� �i

j � i
zN
z2
⇢MN

i
j @tz

M . (2.8)

The quadratic fermionic contribution resulting from linearization gives then formally a Pfaf-

fian, (det OF )
1
2 . Indeed, while the Graßman-odd fields ✓ and ⌘ are complex objects, the vector

 in (2.5) collects them in a formally “redundant” way which includes both the fields and

their complex conjugates. Explicitating real and imaginary parts of ✓, ⌘, it is easy to see that

the fermionic contribution coming from this 16 ⇥ 16 complex operator OF is then the one of

16 real anti-commuting degrees of freedom.

In order to be interpreted as a probability, the Pfa�an should be definite positive. For this

reason, we proceed as in [1]
Z

D e�
R

dtds TOF = (det OF )
1
2 ⌘ (det OF O†

F )
1
4 =

Z

D⇠D⇠̄ e�
R
dtds ⇠̄(O

F

O†
F

)�
1
4 ⇠ , (2.9)

where the second equivalence obviously ignores any phase or anomaly.

3 Discretization and weak coupling expansion

Looking at the free, kinetic part of the fermionic operator (2.6) in Fourier transform
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with

det KF =
⇣

p20 + p21 +
m2

4

⌘8
, (3.2)

it is immediate to realize that for the fermionic degrees of freedom the naive discretization

pµ ! p̊µ ⌘ 1

a
sin(pµa) (3.3)

gives rise to fermion doublers. To suppress them, let us first introduce and afterwords motivate

the following Wilson lattice operator
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@
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gives the contribution to the one-loop partition function
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4 )8

i

= �3 ln 2
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m2 V2

not induce complex phases in the fermionic determinant – here, no complex phase should be

added to the one already implicit in the Hubbard-Stratonovich procedure adopted. We will

find that it is not possible to satisfy all these requirements and therefore we choose to give

up the global U(1) symmetry. Let us discuss the procedure in details. For simplicity we start

with the continuum model (reviewed in Appendix A) and we denote with uM a particular

SO(6) direction (i.e. such that uMuM = 1) defining the vacuum around which we expand the

operator (2.8) perturbatively (as an example, in (A.9) uM = (0, 0, 0, 0, 0, 1) has been chosen).

The free, kinetic part of the fermionic operator (2.8) in Fourier transform reads
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and to compute its determinant one can use the block matrix identity

detKF = det
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The simplicity of the matrix K
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immediately shows that

detKF =
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. (3.4)

From this result it is immediate to realize that for the fermionic degrees of freedom the naive

discretization [48]

pµ ! p̊µ ⌘ 1

a
sin(pµa) (3.5)

gives rise to fermion doublers 12. Notice that the vanishing entries in (3.1) are set to zero

by the U(1) symmetry, as they couple fermions with the same charge. A U(1)-preserving

discretization should not a↵ect those entries of the fermionic matrix, and should act only on

the non-vanishing entries. Furthermore SO(6) symmetry fixes completely the structure of the

matrix (3.1) so that the only Wilson term preserving all the symmetries would be of the form

p
0

! p
0

+ ai and p
1

! p
1

+ bi for di↵erent ai and bi in the four entries where p
0

and p
1

appear in (3.1). Implementing such a shift and computing the determinant of the fermionic

operator one immediately finds that this would not yield the perturbative result (2.3) for any

12The doubling phenomenon corresponds to the denominator of the fermionic propagator vanishing on the

lattice not only for p2 equal to the physical mass, but also in other 2d � 1 (here three) points – the ones

which have at least one component equal to ⇡/a and all the others vanishing. Fermionic propagators are here

proportional to the relevant entries of the inverse of the fermionic kinetic operator (3.1).

8
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Add to the action a “Wilson term”, KF +W ⌘ KW
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value of ai and bi. Therefore we choose to break U(1) symmetry and introduce the following
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and can be used together with its bosonic counterpart – obtained via the naive replacement

pµ ! p̂µ in the numerator of the ratio (A.12) – to define in this discretized setting the one-loop

partition function
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and the integral above has been obtained rescaling the momenta with the lattice spacing and

setting r = 1. A consistent discretization will be the one for which (3.11)-(3.12) converge

in the a ! 0 limit to the value in the continuum (A.12). The integral (3.12) can be indeed

quickly performed numerically, leading to

�(1) = � lnZ(1) = lim
a!0

I(a) = �3 ln 2
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where we used that V
2

= L2 = (Na)2. Namely, expanding the integrand in (3.12) around

a ⇠ 0 (recall that M = ma) the O(a0) and O(a1) terms vanish. Then, with this discretization
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Discretization and lattice perturbation theory

A naive discretization pµ ! �
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Simulations, continuum limit: measurements
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Measurement I: hx, x⇤i correlator

From the correlator of the x fields
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No infinite renormalization occurring, no need of tuning m to adjust for it.

This corroborates our choice of line of constant physics.
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Consistent with large g prediction, no clear signal of bending down.

No infinite renormalization occurring, no need of tuning m to adjust for it.
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Figure 2: Correlator Cx(t) =
P

s
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)i of bosonic fields x, x⇤ (left panel) and

corresponding e↵ective mass me↵

x = 1

a ln
C

x

(t)
C

x

(t+a) normalized by m2 (right panel), plotted

as functions of the time t in units of mx
LAT

for di↵erent g and lattice sizes. The flatness

of the e↵ective mass indicates that the ground state saturates the correlation function, and

allows for a reliable extraction of the mass of the x-excitation. Data points are masked by

large errorbars for time scales greater than unity because the signal of the correlator degrades

exponentially compared with the statistical noise.

On the lattice, the physical mass mx
LAT

is usefully obtained as a limit of an e↵ective mass
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x , defined at a given timeslice extension T and fixed timeslice pair (t, t+a) by the discretized
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Figure 2 shows the e↵ective mass measured from (4.8) as a function of the time t in units

of mx
LAT

for di↵erent g and lattice sizes. To reduce uncertainty about the saturation of the

ground state in the correlation function - in (4.7), corrections to the limit are proportional to

e��E t, where �E is the energy splitting with the nearest excited state – in our simulations

the lattice temporal extent T is always twice the spatial extent L. The flatness of the e↵ective

mass in Fig. 2 (right) indicates that the ground state saturates the correlation function, and
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Measurement II: (derivative of the) cusp anomaly
We measure hScuspi ⌘ g V
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(det gO)

� 1

2 .
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)
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6.3. Observables
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Figure 6.5 Plots of ÈSLATÍ
2L2 , where fits (dashed lines) to data points are linear in 1/L2.

To ensure better visibility of the fits at di�erent g values, ln g has been added. The
extrapolation to the continuum limit (symbol at infinite L) determines the coe�cient
c/2 of the divergent (≥ L2) contribution in (6.3.23).

To prove this, c can be determined numerically by an extrapolation with a fit
linear in 1/L2 from data points for ÈSLATÍ

2L2 = c
2

+ S0
2L2 (see Figures 6.5, 6.6). We

hereby find a value of c
2

= 12.5(0) (with a discrepancy of 0.01) for g = 30, . . . , 100.
This extrapolation thus supports the previous claim that the coe�cient of the
divergence corresponds to half the number of bosons appearing in the path in-
tegral which is N

B

= 25. Having determined the value of c with good precision,
we can proceed first by fixing it to be exact c = 25 and subtract the contributing
divergence from ÈS

LAT

Í. We apply (6.3.25) on the lattice

ÈS
LAT

Í ≠ c
2

1
2L2

2

S
0

© f Õ(g)
4 , (6.3.32)

in order to perform simulations for finite g and determine values for f Õ(g) which
is the main aim of our study. Data points with g = 100, . . . , 30 in Figure 6.7 show
a good agreement with the perturbative predictions at leading order of (3.4.6).
For lower values of g we observe deviations that obstruct the continuum limit
and signal the presence of a further quadratic (≥ L2) divergence increasing in its
amplitude for decreasing g. From Figure 6.6 we observe that the coe�cient of
the subtracted divergence is not overall constant, but possesses a g dependence

c(g) = N
B

+ O(g≠1). (6.3.33)

We therefore must not only subtract the constant, but the full contribution of c(g)
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Figure 5: Plot of the ratio
hS

LAT

i� c

2

(2N2

)

S
0

⌘ f 0
(g)
4

, where the coe�cient of the divergent

contribution c has been here fixed to the exact value c = 15 and S
0

= 1

2

M2 (2N2) g. For very

large g, there is agreement with the continuum prediction f 0(g) = 4 in (2.3). For smaller

values (g = 10, 5, orange and light blue data points) strong deviations appear, compatible

with quadratic divergences.

study here. At g = 100, 50, 30, 20 the plots in Fig. 5 show a good agreement with the leading

order prediction in (2.3) for which f 0(g) = 4. For lower values of g – orange and light blue

data points in Figure 5 – we observe deviations that obstruct the continuum limit and signal

the presence of further quadratic (⇠ N2) divergences. They are compatible with an Ansatz

for hS
LAT

i for which the “constant” contribution multiplying 2N2 in (4.9)-(4.10) is actually

g-dependent. It seems natural to relate these power-divergences to those arising in continuum

perturbation theory, where they are usually set to zero using dimensional regularization [8].

From the perspective of a hard cut-o↵ regularization like the lattice one, this is related to

the emergence in the continuum limit of power divergences – quadratic, in the present two-

dimensional case – induced by mixing of the (scalar) Lagrangian with the identity operator

under UV renormalization. Additional contributions to these deviations might be due to the

(possibly wrong) way the continuum limit is taken, i.e. they could be related to a possible

infinite renormalization occurring in those field correlators and corresponding physical masses

which have been not investigated here (fermionic and z excitations). While to shed light on

the issue such points should be investigated in the future – see further comments in Section

5 – we proceed with a non-perturbative subtraction of these divergences. Namely, from the

data of Fig. 5 we subtract the continuum extrapolation of c
2

(multiplied by the number of

lattice points, 2N2), as determined in the right diagram of Fig. 4, for the full range of the

coupling explored. The result is shown in Fig. 6. The divergences appear to be completely

18

Simulation: the cusp action

In measuring hS
cusp

i ⌘ g V
2

m2

8

f 0
(g) quadratic divergences appear.

hS
LAT

i = g N2 M2

f 0
(g)

LAT

4

+

c(g)

2

(2N2

)

S
0

= g N2 M2

In continuum perturbation theory dim. reg. set them to zero.
Here, expected mixing of the Lagrangian with lower dimension operator

O(�(s))r =

X

↵:[O
↵

]D

Z↵ O↵(�(x)) , Z↵ ⇠ ⇤

(D�[O
↵

])⇠ a�(D�[O
↵

])

Measurement II: (derivative of the) cusp anomaly
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Figure 4: Left panel: Plots of hS
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i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)

are used for a check of the finite volume e↵ects, which appear here to be visible. Dashed and

dotted lines are the results of, respectively, a linear fit in 1/g and a fit to a polynomial of

degree two.

fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.
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Measurement II: (derivative of the) cusp anomaly
To compare, assume g = ↵ gc: then from f 0
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Courtesy of David Schaich

Coupling dependence of Coulomb coefficient

Fit V (r) to Coulombic
or confining form

V (r) = A � C/r

V (r) = A � C/r + �r

C is Coulomb coefficient
� is string tension

V (r) is Coulombic at all �:
fits to confining form produce vanishing string tension

C for U(4) in good agreement with perturbation theory for � . 3/
p

5

U(2) and U(3) results less stable — working on further improvements

David Schaich (Bern) Lattice N = 4 SYM Strings 2017, 29 June 8 / 13

On the CFT side

Strong sign problem at strong coupling (� � 1), one (?) tuning.

The control is in the perturbative region (matching with NNLO).

On the CFT side

Strong sign problem at strong coupling (� � 1), one tuning.

The control is in the perturbative region (matching with NNLO).



Addressed how genuine QFT tries to solve (find a good regulator for)
the Green-Schwarz string worldsheet in AdS backgrounds.

The model is amenable to study using lattice QFT methods
(Wilson-like fermion discretizations, standard simulation algorithms).
Ongoing work on several open questions, which include the proper continuum limit.
Not yet predictive, but setting a benchmark: interesting beyond string community.

Non-perturbative definition of string theory?
For sure, suitable framework for first principle statements (proofs of AdS/CFT)
and (potentially) very efficient tool in numerical holography.

Future: different backgrounds/gauge-fixing/observables . . .

Conclusions

I presented a study of lattice field theory methods for gauge-fixed string �-models
relevant in AdS/CFT: address ab initio, non-perturbative calculations within them.

I The model – GS string on GKP vacuum – is amenable to study
using standard techniques (Wilson-like fermion discretizations, RHMC algorithm).

I We observe good agreement with expectation at large g,
and indications of non-perturbative physics;

Ongoing work on several open questions, which include the proper continuum limit.
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Ongoing work on several open questions, which include the proper continuum limit.
Not yet predictive, but setting a benchmark: interesting beyond string community.

Non-perturbative definition of string theory?
For sure, suitable framework for first principle statements (proofs of AdS/CFT)
and (potentially) very efficient tool in numerical holography.

Future: different backgrounds/gauge-fixing/observables,. . .

Conclusions

Benchmark study of lattice field theory methods for gauge-fixed string �-models
relevant in AdS/CFT: address ab initio, non-perturbative calculations within them.

I The model – GS string on GKP vacuum – is amenable to study
using standard techniques (Wilson-like fermion discretizations, RHMC algorithm).

I Observables measured are in good agreement with expectation at large g

I At very small g sign problem, but (possible) safe region for non-perturbative info.

Ongoing work on several open questions, which include the proper continuum limit.

Conclusions

I presented a study of lattice field theory methods for gauge-fixed string �-models
relevant in AdS/CFT: address ab initio, non-perturbative calculations within them.

I The model – GS string on GKP vacuum – is amenable to study
using standard techniques (Wilson-like fermion discretizations, RHMC algorithm).

I We observe good agreement with expectation at large g,
and indications of non-perturbative physics;

Ongoing work on several open questions, which include the proper continuum limit.
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I . . .

I . . .

Thanks for your attention.



Extra-slides



Boundary conditions

Fluctuations must vanish at the AdS boundary (two sides of the grid)

˜X(t = �1, s) = 0 =

˜X(t, s = +1)

and be free to fluctuate elsewhere. Field redefinitions adopted in the continuum lead to
exotic (unstable) boundary conditions.

So far we used periodic BC for all the fields (antiperiodic temporal BC for fermions).

and evaluated finite volume effects ⇠ e�mL ⌘ e�M N .

Most run are done at M N = 4 (e�4 ' 0.02),

some at M N = 6 (e�6 ' 0.002).

Appear to play a role only in evaluating

the coefficient of divergences.
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Figure 4: Left panel: Plots of hS
LAT

i
2N2

, where fits (dashed lines) to data points are linear in

1/N2. To ensure better visibility of the fits at di↵erent g values, ln g has been added. The

extrapolation to the continuum limit (symbol at infinite N) determines the coe�cient c/2 of

the divergent (⇠ N2) contribution in (4.9)-(4.10) and is represented in the diagram of the

right of this figure. Right panel: Data points estimate the continuum value of c/2 as from

the extrapolations of the linear fits above. The simulations at g = 30, mL = 6 (orange point)

are used for a check of the finite volume e↵ects, which appear here to be visible. Dashed and

dotted lines are the results of, respectively, a linear fit in 1/g and a fit to a polynomial of

degree two.

fits in Fig. 4, left, respectively 17 – consistently with the number 15 = 8 + 7 of bosonic fields

appearing in the path integral. Namely, such a contribution to the vev hSi = �@ lnZ/@ ln g in

(4.9), field-independent and proportional to the lattice volume, is simply counting the number

of degrees of freedom which appear quadratically, and multiplying g, in the action. Indeed,

for very large g the theory is quadratic in the bosons 18 and equipartition holds, namely

integration over the bosonic variables yields a factor proportional to g�
(2N

2

)

2 for each bosonic

field species 19.

Having determined with good precision the coe�cient of the divergence, we can proceed

first fixing it to be exactly c = 15 and subtracting from hS
LAT

i the corresponding contribution.
Having in mind an analysis at finite g, we perform simulations in order to determine the ratio

hSLAT i � c
2

(2N2)

S
0

⌘ f 0(g)
LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of our

17Recall that in Fig. 4 ln g has been added to ensure better visibility of the fits at di↵erent g values.
18In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action, since

this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling argument.
19It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity S
bos

= 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.

17



A remark on numerics

The most difficult part of the algorithm is the inversion of the fermionic matrix

|Pf OF | ⌘ (detO†
FOF )

1

4 ⌘
Z

d⇣d¯⇣ e�
R
d2⇠ ⇣̄ (O†

F

O
F

)
� 1

4 ⇣ .

The RHMC (Rational Hybrid Montecarlo) uses a rational approximation

¯⇣ (O†
FOF )

� 1

4 ⇣ = ↵0
¯⇣ ⇣ +

PX

i=1

¯⇣
↵i

O†
FOF + �i

⇣

with ↵i and �i tuned by the range of eigenvalues of OF .

Defining si ⌘ 1

O
†
F

O
F

+�
i

⇣, one solves

(O†
FOF + �i) si = ⇣ , i = 1, . . . , P.

with a (multi-shift conjugate) solver for which

number of iterations ⇠ ��1
min

In our case the spectrum of OF has very small eigenvalues.
And:



Spectrum of OF

In simpler models with four-fermion interactions, similar manipulations
ensure a definite positive Pfaffian. There real, antisymmetric operator
with doubly degenerate eigenvalues: quartets (ia, ia,�ia,�ia) , a 2 R.

[Catterall 2016, Catterall and Schaich 2016]

Alternative linearization

The Pfaffian is now real (Pf OF )

2
= detOF � 0

but not definite positive: Pf OF = ±(detOF )

1

2 .

For g  5 equal number of + and �. Phase problem traded for a purely sign problem?

Gain in computational costs: for large values of N (finer lattices) the algorithm
for evaluating complex determinants is very inefficient. Now just a sign flip.

hOireweight =
hO ei✓i✓=0

hei✓i✓=0
�! hOireweight =

hOwi
hwi

where w = ±1, and
p
detOF = (detO†

F OF )

1

4 .

Allows removing a systematic error (omission of reweighting factor for large N ).

NOTICE: there’s a region of the coupling which is free from sign problem
and that clearly sees nonperturbative physics.
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The good trade is then for the reweighting
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p
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F OF )
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4 .

Simulations are ongoing, we will hopefully have a much better statistics at small g soon.
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(Proposal of) an alternative setting

A �

5

-hermiticity and antisymmetry
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Pfaffian is real, (PfOF )
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= detOF � 0, but not positive definite, PfOF = ± detOF .

Spectrum of OF

In simpler models with four-fermion interactions, similar manipulations
ensure a definite positive Pfaffian. There real, antisymmetric operator
with doubly degenerate eigenvalues: quartets (ia, ia,�ia,�ia) , a 2 R.

[Catterall 2016, Catterall and Schaich 2016]

detOF
W               ensures                  to be real and non-negative.with �†

5�5 = 1 , �†
5 = ��5

(Proposal of) an alternative setting

A �

5

-hermiticity and antisymmetry

O†
F = �

5

OF �

5

, OT
F = �OF

Pfaffian is real, (PfOF )

2

= detOF � 0, but not positive definite, PfOF = ± detOF .

(Proposal of) an alternative setting

�5-hermiticity and antisymmetry hold now for the full operator (including aux. fields)

O†
F = �5 OF �5 , OT

F = �OF

Pfaffian is real, (PfOF )

2
= detOF � 0, but not positive definite, PfOF = ± detOF .



Spectrum of OF

From �5-hermiticity and antisymmetry,

P(�) = det(OF � �1) = det(�5 (OF � �1)�5)

= det(O†
F + �1) = det(OF + �⇤1)⇤ = P(�⇤

)

⇤

Spectrum characterized by quartets {�,��⇤,��,�⇤}.
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Choosing a starting configuration with positive Pfaffian, no sign change possible.
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For � = ±�⇤, no four-fold property: due to zero crossings, Pfaffian may change sign.

Spectrum of OF

For � = ±�⇤, no four-fold property: due to zero crossings, Pfaffian may change sign.

Purely imaginary eigenvalues correspond to Yukawa-terms, even those present
in the original Lagrangian: no “suitable enough” choice of auxiliary fields.
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g T/a⇥ L/a Lm am ⌧S
int

⌧mx

int

statistics [MDU]

5 16⇥ 8 4 0.50000 0.8 2.2 900
20⇥ 10 4 0.40000 0.9 2.6 900
24⇥ 12 4 0.33333 0.7 4.6 900,1000
32⇥ 16 4 0.25000 0.7 4.4 850,1000
48⇥ 24 4 0.16667 1.1 3.0 92,265

10 16⇥ 8 4 0.50000 0.9 2.1 1000
20⇥ 10 4 0.40000 0.9 2.1 1000
24⇥ 12 4 0.33333 1.0 2.5 1000,1000
32⇥ 16 4 0.25000 1.0 2.7 900,1000
48⇥ 24 4 0.16667 1.1 3.9 594,564

20 16⇥ 8 4 0.50000 5.4 1.9 1000
20⇥ 10 4 0.40000 9.9 1.8 1000
24⇥ 12 4 0.33333 4.4 2.0 850
32⇥ 16 4 0.25000 7.4 2.3 850,1000
48⇥ 24 4 0.16667 8.4 3.6 264,580

30 20⇥ 10 6 0.60000 1.3 2.9 950
24⇥ 12 6 0.50000 1.3 2.4 950
32⇥ 16 6 0.37500 1.7 2.3 975
48⇥ 24 6 0.25000 1.5 2.3 533,652
16⇥ 8 4 0.50000 1.4 1.9 1000
20⇥ 10 4 0.40000 1.2 2.7 950
24⇥ 12 4 0.33333 1.2 2.1 900
32⇥ 16 4 0.25000 1.3 1.8 900,1000
48⇥ 24 4 0.16667 1.3 4.3 150

50 16⇥ 8 4 0.50000 1.1 1.8 1000
20⇥ 10 4 0.40000 1.2 1.8 1000
24⇥ 12 4 0.33333 0.8 2.0 1000
32⇥ 16 4 0.25000 1.3 2.0 900,1000
48⇥ 24 4 0.16667 1.2 2.3 412

100 16⇥ 8 4 0.50000 1.4 2.7 1000
20⇥ 10 4 0.40000 1.4 4.2 1000
24⇥ 12 4 0.33333 1.3 1.8 1000
32⇥ 16 4 0.25000 1.3 2.0 950,1000
48⇥ 24 4 0.16667 1.4 2.4 541

Table 1: Parameters of the simulations: the coupling g, the temporal (T ) and spatial (L)

extent of the lattice in units of the lattice spacing a, the line of constant physics fixed by Lm

and the mass parameter M = am. The size of the statistics after thermalization is given in the

last column in terms of Molecular Dynamic Units (MDU), which equals an HMC trajectory

of length one. In the case of multiple replica the statistics for each replica is given separately.

The auto-correlation times ⌧ of our main observables mx and S are also given in the same

units.
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Parameters of the simulations



Measurement II: (derivative of the) cusp anomaly

We proceed subtracting the continuum extrapolation of c
2

multiplied by N2:
divergences appear to be completely subtracted, confirming their quadratic nature.
Errors are small, and do not diverge for N ! 1.
Flatness of data points indicates very small lattice artifacts.

We can thus extrapolate at infinite N to show the continuum limit.
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Figure 6: Plots for the ratio
hS

LAT

i� c

2

(2N2

)

S
0

+ ln g as a function of 1/N , where the divergent

contribution cN2/2 is now the continuum extrapolation determined in Fig. 4. To ensure

better visibility of the fits at di↵erent g values, ln g has been added. Dashed lines represent

a linear fit to all the data points for one value of g, while for dotted lines the fit is to a

constant and only includes the two smallest lattice spacings. Symbols at zero (infinite N) are

extrapolations from the fit constant in 1/N .

subtracted, confirming their purely quadratic nature. The flatness of data points - which can

be fitted by a constant – indicates very small lattice artifacts. At least in the region of lattice

spacings explored from our simulations errors are small, and do not diverge as one approaches

the N ! 1 limit. We can thus use the extrapolations at infinite N of Fig. 6 to show the

continuum limit for the left hand side of (4.10), Fig. 7. This is our measure for f 0(g)/4, and

it allows in principle a direct comparison with the perturbative series (dashed line) and with

prediction obtained via the integrability of the model (continuous line, representing the first

derivative of the cusp as obtained from a numerical solution of the BES equation [41] 19). To

compare our extrapolations with the continuum expectation, we match the lattice point for

the observable f 0(g) at g = 10 – as determined from the N ! 1 limit of f 0(g)
LAT

(4.10)

– with the continuum value for the observable f 0(gc)c as determined from the integrability

prediction, i.e. as obtained from a numerical solution of the BES equation [41]. This is where

in Fig. 7 the lattice point lies exactly on the (integrability) continuum curve. The value

g = 10 has been chosen as a reference point since it is far enough from both the region where

the observable is substantially flat and proportional to one (which ensure a better matching

procedure) and the region of higher errors (also, where the sign problem plays no role yet,

see Section 4.3). Assuming that a simple finite rescaling relates the lattice bare coupling g

19We thank D. Volin for providing us with a numerical solution to the BES equation.
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