Time-reversal anomaly of 2+1d topological phases

Yuji Tachikawa (Kavli IPMU)

in collaboration with **Kazuya Yonekura** (Kavli IPMU)

[1610.07010, 1611.01601, ...]

Strings 2017, Tel Aviv

The first quantum anomaly we learn is about a

- continuous symmetry,
- in even dimensions,
- with massless excitations,
- which are fermions.

- continuous symmetry,
- in even dimensions,
- with massless excitations,
- which are fermions.

- **discrete** symmetry,
- in even dimensions,
- with massless excitations,
- which are fermions.

- discrete symmetry,
- in **odd** dimensions,
- with massless excitations,
- which are fermions.

- discrete symmetry,
- in **odd** dimensions,
- without any massless excitations,
- which are fermions.

- discrete symmetry,
- in **odd** dimensions,
- without any massless excitations,
- and with anyons.

For example, the 3d Chern-Simons theory

$$\mathrm{U}(n)_{2n}$$

has a secret parity symmetry, but with an anomaly

$$u = \pm 2 \in \mathbb{Z}_{16}$$
.

I'd like to explain this to you, using the rest of my time today.

Note 1: I won't distinguish parity and time-reversal unless necessary, which is OK thanks to CPT.

Note 2: I won't be careful about the **almost trivial spin TQFT** part in the talk, if you know what I mean.

Note 3: I will concentrate on one particular example for illustration, but the formalism is general.

I really don't know.

I really don't know.

Isn't it pretty funny that $U(n)_{2n}$ is parity symmetric?

I really don't know.

Isn't it pretty funny that $U(n)_{2n}$ is parity symmetric?

That was a sufficient motivation for me to study it.

So, let's dive into it.

Why is the 3d $U(n)_{2n}$ Chern-Simons theory parity symmetric?

There're many ways to show this but let me use a method which appeals to a 4d SUSY person like me...

Consider 4d $\mathcal{N}=1$ SU(X) super Yang-Mills.

It has X vacua.

Here X = 6.

There are domain walls connecting different vacua of 4d SU(X) theory.

When n steps apart, the worldvolume theory is $3d \mathcal{N}=1$ supersymmetric

$$\mathrm{U}(n)_X$$

Chern-Simons theory (+ the center-of-mass mode.) [Acharya-Vafa hep-th/0103011]

In the example above we have $U(2)_6$.

Spacetime parity sends $\langle \lambda \lambda \rangle$ to $\overline{\langle \lambda \lambda \rangle}$.

It exchanges

$$\mathrm{U}(n)_X \leftrightarrow \mathrm{U}(X-n)_X$$
.

Therefore, when X = 2n, we have:

meaning that

$$\mathrm{U}(n)_{2n} \leftrightarrow \mathrm{U}(n)_{2n}$$

should be parity symmetric.

The parity transformation

$$\mathrm{U}(n)_X \leftrightarrow \mathrm{U}(X-n)_X$$
.

is in fact the **level-rank duality**. [Hsin-Seiberg, 1607.07457]

So far I've been using the $\mathcal{N}=1$ convention for levels.

In the TQFT convention, we have

$$\mathrm{U}(\mathbf{n})_X = \frac{\mathrm{SU}(\mathbf{n})_{X-n} \times \mathrm{U}(1)_{nX}}{\mathbb{Z}_n}$$

and

$$\mathrm{U}(X-n)_X = \frac{\mathrm{SU}(X-n)_n \times \mathrm{U}(1)_{(X-n)X}}{\mathbb{Z}_{X-n}}$$

The parity transformation

$$\mathrm{U}(n)_X \leftrightarrow \mathrm{U}(X-n)_X$$
.

is in fact the **level-rank duality**. [Hsin-Seiberg, 1607.07457]

So far I've been using the $\mathcal{N}=1$ convention for levels.

In the TQFT convention, we have

$$U(n)_{X} = \frac{SU(n)_{X-n} \times U(1)_{nX}}{\mathbb{Z}_{n}}$$

$$U(X-n)_{X} = \frac{SU(X-n)_{n} \times U(1)_{(X-n)X}}{\mathbb{Z}_{X-n}}$$

and

Let's concretely check that $U(n)_{2n}$ is parity symmetric.

The anyons/quasiparticles/lines of $U(n)_X$ are specified by Young diagrams which fit in a box of size $n \times (X - n)$.

The level-rank duality is the transpose.

Let's take n = 3, X = 2n = 6. An example:

Computing anyons' spins h using standard formulas, we find

This is as it should be, since the parity should do

$$h \longleftrightarrow -h$$
.

Let's do another example.

This is consistent with

$$h \longleftrightarrow -h$$

because this is a **spin TQFT**, for which h of anyons in the NS sector is defined only mod 1/2.

Physically, there are very heavy but dynamical fermions in the system, which can change the spin of a quasiparticle by 1/2.

Let's have some fun by putting $U(n)_{2n}$ on non-orientable spacetimes. Consider the Möbius strip times a circle.

This has a torus boundary, and therefore creates a state in \mathcal{H}_{T^2} .

Call it a crosscap state |crosscap\).

or equivalently

To determine the state

let us glue it to

$$|a
angle = iggrightarrow imes iggrightarrow i$$

After some mental gymnastics, the geometry is

meaning that

 $\langle a|{\rm crosscap}\rangle={\rm tr}\, P$ on Hilb. on S^2 with a and Pa.

After some mental gymnastics, the geometry is

meaning that

 $\langle a|{\rm crosscap}\rangle={\rm tr}\, P$ on Hilb. on S^2 with a and Pa.

So we have

$$\langle a | {
m crosscap}
angle = {
m tr}\, P \, {
m on} \, {
m Hilb.} \, {
m on} \, S^2 \, {
m with} \, a \, {
m and} \, Pa$$

$$= \begin{cases} \pm 1 & {
m if} \, a = \overline{Pa}, \\ 0 & {
m otherwise}. \end{cases}$$

Note that $\overline{Pa} = Ta$ due to the CPT theorem. So

$$|\text{crosscap}\rangle = \sum_{a=Ta} \pm |a\rangle$$

where \pm in front of $|a\rangle$ specifies the P eigenvalue of the state

[Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]

For $U(3)_6$ we have

How do we determine the signs?

So far we displayed the crosscap state as

$$|crosscap\rangle =$$
 \times \times \times \times \times \times \times \times \times

but let's now view it as

$$|\operatorname{crosscap}\rangle = A$$

The geometry doesn't change under

$$B \mapsto B$$
, $A \mapsto A + B$.

The action of

$$B \mapsto B, \qquad A \mapsto A + B$$

in the basis we're using

is $S^{-1}TS$.

This means

$$S^{-1}TS | \operatorname{crosscap} \rangle \propto | \operatorname{crosscap} \rangle$$

where

$$|\mathrm{crosscap}
angle = \sum_{a=Ta} \pm |a
angle$$
 .

For $U(3)_6$ this is enough to fix the signs essentially uniquely:

with

$$S^{-1}TS | \text{crosscap} \rangle = \exp(\frac{2\pi i \cdot 2}{16}) | \text{crosscap} \rangle$$
.

This phase is a manifestation of the anomaly of spatial parity \sim time-reversal.

The anomalous phase

$$S^{-1}TS\ket{\operatorname{crosscap}} = \exp(rac{2\pi i \cdot 2}{16})\ket{\operatorname{crosscap}}.$$

is associated to the operation

$$B \mapsto B$$
, $A \mapsto A + B$

in the geometry

Regarding A as the time direction, we see the system on

has the momentum

$$p = \frac{2}{16} \mod 1$$

which is the conserved quantity associated to the isometry.

In a non-anomalous theory, we have

$$p=n\in\mathbb{Z}$$
.

This is because the 2π rotation should not do anything:

$$\exp\left[2\pi i p\right] = 1.$$

In an anomalous theory, this might not hold, because of phase ambiguity:

$$\exp\left[2\pi i p\right]
eq 1.$$

[Cho-Hsieh-Morimoto-Ryu, 1501.07285]

For example, on

a massless Majorana fermion in 3d has [Hsieh-Cho-Ryu,1503.01411]

$$p = \frac{1}{16} \mod 1$$

and we found that $U(3)_6$ has twice the anomaly

$$p = \frac{2}{16} \mod 1.$$

 ν Majorana fermions in 3d have the anomalous momentum

$$p = \frac{\nu}{16} \mod 1$$

on

So $\nu = 16$ fermions do not manifest anomalies in this geometry.

In fact this is a general feature:

Parity anomaly of this type of systems is a \mathbb{Z}_{16} -valued quantity.

To explain this, let us pause for a moment and consider $\mathbf{U}(1)$ anomaly in 4d, which is characterized by the anomaly inflow

$$k$$
 4d chiral fermions $ightarrow$ $\leftarrow \exp[2\pi i k \int_X A \wedge F \wedge F]$

The anomaly is characterized by $k \in \mathbb{Z}$ since

$$\exp(2\pi i \int_X A \wedge F \wedge F)$$

is a general complex number of absolute value 1.

In our case, the anomaly is canceled by the anomaly inflow

where the 4d bulk term is the Atiyah-Patodi-Singer η invariant. [Kapustin-Thorngren-Turzillo-Wang, 1406.7329] [Witten, 1605.02391]

The anomaly is characterized by $\nu \in \mathbb{Z}_{16}$, since

$$\exp(2\pi i\eta_X)$$

of any closed manifold is a 16-th root of unity.

Summarizing, we noted that the 3d Chern-Simons theory

$$\mathrm{U}(n)_{2n}$$

is secretly parity invariant, but has an anomaly

$$\nu=2\in\mathbb{Z}_{16}$$
.

We arrived at this result by considering a state

Where to go from here?

Firstly, there are things to be cleaned up:

- 3d TQFT on oriented manifold: [Moore-Seiberg "RCFT"] and [Witten, "QFT and the Jones polynomial"].
- 3d TQFT on oriented manifold with spin structure: [Bruillard-Galindo-Hagge-Ng-Plavnik-Rowell-Wang, 1603.09294], [Bhardwaj-Gaiotto-Kapustin, 1605.01640].
- 3d TQFT on **non-orientable** manifold : [Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]

Firstly, there are things to be cleaned up:

- 3d TQFT on oriented manifold: [Moore-Seiberg "RCFT"] and [Witten, "QFT and the Jones polynomial"].
- 3d TQFT on oriented manifold with spin structure: [Bruillard-Galindo-Hagge-Ng-Plavnik-Rowell-Wang, 1603.09294], [Bhardwaj-Gaiotto-Kapustin, 1605.01640].
- 3d TQFT on **non-orientable** manifold: [Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]

Firstly, there are things to be cleaned up:

- 3d TQFT on oriented manifold: [Moore-Seiberg "RCFT"] and [Witten, "QFT and the Jones polynomial"].
- 3d TQFT on oriented manifold with spin structure: [Bruillard-Galindo-Hagge-Ng-Plavnik-Rowell-Wang, 1603.09294], [Bhardwaj-Gaiotto-Kapustin, 1605.01640].
- 3d TQFT on **non-orientable** manifold: [Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]

But we do not yet have a definitive treatment of 3d TQFT on **non-orientable** manifold **with pin structure**.

Somebody has to do that.

have the braiding

But if we put this on the crosscap it is problematic.

This only happens with **non-orientable** + **spin**.

have the braiding

But if we put this on the crosscap it is problematic.

This only happens with **non-orientable** + **spin**.

have the braiding

But if we put this on the crosscap it is problematic.

This only happens with **non-orientable** + **spin**.

have the braiding

But if we put this on the crosscap it is problematic.

This only happens with **non-orientable** + **spin**.

Secondly, more importantly, suppose you want to use matching of these subtler/new anomalies to constrain the dynamics. cf. [Gaiotto-Kapustin-Komargodski-Seiberg, 1703.00501]

If the anomaly can be realized by a TQFT, you can just add it to match the missing anomaly.

So you need to know when an anomaly can be realized by a TQFT.

That's it! Thanks for your attention.