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The first quantum anomaly we learn is about a

• continuous symmetry,
• in even dimensions,
• with massless excitations,
• which are fermions.
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Today I will talk about quantum anomaly of a

• continuous symmetry,
• in even dimensions,
• with massless excitations,
• which are fermions.
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Today I will talk about quantum anomaly of a

• discrete symmetry,
• in even dimensions,
• with massless excitations,
• which are fermions.
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Today I will talk about quantum anomaly of a

• discrete symmetry,
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Today I will talk about quantum anomaly of a

• discrete symmetry,
• in odd dimensions,
• without any massless excitations,
• which are fermions.
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Today I will talk about quantum anomaly of a

• discrete symmetry,
• in odd dimensions,
• without any massless excitations,
• andwith anyons.
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For example, the 3d Chern-Simons theory

U(n)2n

has a secret parity symmetry, but with an anomaly

ν = ±2 ∈ Z16.

I’d like to explain this to you, using the rest of my time today.

4 / 34



Note 1: I won’t distinguish parity and time-reversal unless necessary,
which is OK thanks to CPT.

Note 2: I won’t be careful about the almost trivial spin TQFT part
in the talk, if you know what I mean.

Note 3: I will concentrate on one particular example for illustration,
but the formalism is general.
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Why should you care?

I really don’t know.

Isn’t it pretty funny thatU(n)2n is parity symmetric?

That was a sufficient motivation for me to study it.
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So, let’s dive into it.

Why is the 3dU(n)2n Chern-Simons theory parity symmetric?

There’re many ways to show this but
let me use a method which appeals to a 4d SUSY person like me...
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Consider 4dN=1 SU(X) super Yang-Mills.

It hasX vacua.
⟨λλ⟩

HereX = 6.
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There are domain walls connecting different vacua of 4d SU(X) theory.

⟨λλ⟩

When n steps apart, the worldvolume theory is 3dN=1 supersymmetric

U(n)X

Chern-Simons theory (+ the center-of-mass mode.)
[Acharya-Vafa hep-th/0103011]

In the example above we haveU(2)6.
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Spacetime parity sends ⟨λλ⟩ to ⟨λλ⟩.

⟨λλ⟩

It exchanges
U(n)X ↔ U(X−n)X .
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Therefore, whenX = 2n, we have:

⟨λλ⟩

meaning that
U(n)2n ↔ U(n)2n

should be parity symmetric.
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The parity transformation

U(n)X ↔ U(X−n)X .

is in fact the level-rank duality. [Hsin-Seiberg, 1607.07457]

So far I’ve been using theN=1 convention for levels.

In the TQFT convention, we have

U(n)X =
SU(n)X−n ×U(1)nX

Zn

and
U(X−n)X =

SU(X−n)n ×U(1)(X−n)X

ZX−n
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Let’s concretely check thatU(n)2n is parity symmetric.

The anyons/quasiparticles/lines ofU(n)X are specified by
Young diagrams which fit in a box of size n× (X − n).

The level-rank duality is the transpose.

Let’s take n = 3,X = 2n = 6. An example:

←→
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Computing anyons’ spins h using standard formulas, we find

←→

h = 2/3 ←→ h = 1/3

This is as it should be, since the parity should do

h←→ −h.
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Let’s do another example.

←→

h = 1/4 ←→ h = 1/4

This is consistent with
h←→ −h

because this is a spin TQFT, for which
h of anyons in the NS sector is defined only mod 1/2.

Physically, there are very heavy but dynamical fermions in the system,
which can change the spin of a quasiparticle by 1/2.
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Let’s have some fun by puttingU(n)2n on non-orientable spacetimes.
Consider the Möbius strip times a circle.

×

or equivalently

×

This has a torus boundary, and therefore creates a state inHT 2 .

Call it a crosscap state |crosscap⟩.
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To determine the state

|crosscap⟩ = × ,

let us glue it to

|a⟩ = ×
a

.
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After some mental gymnastics, the geometry is

aPa

aPa

meaning that

⟨a|crosscap⟩ = trP on Hilb. on S2 with a and Pa.
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So we have

⟨a|crosscap⟩ = trP on Hilb. on S2 with a and Pa

=

{
±1 if a = Pa,
0 otherwise.

Note that Pa = Ta due to the CPT theorem. So

|crosscap⟩ =
∑

a=Ta

± |a⟩

where± in front of |a⟩ specifies the P eigenvalue of the state

Pa a
on S2.

[Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]
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ForU(3)6 we have

|crosscap⟩ = + ± ± ±

± ± ± ± .

How do we determine the signs?
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So far we displayed the crosscap state as

|crosscap⟩ =

B

×

A

but let’s now view it as

|crosscap⟩ = A B .

The geometry doesn’t change under

B 7→ B, A 7→ A + B.
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The action of
B 7→ B, A 7→ A + B

in the basis we’re using

B

×
a

A

is S−1TS.

This means
S−1TS |crosscap⟩ ∝ |crosscap⟩

where
|crosscap⟩ =

∑
a=Ta

± |a⟩ .
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ForU(3)6 this is enough to fix the signs essentially uniquely:

|crosscap⟩ = + − + +

− − + − .

with
S−1TS |crosscap⟩ = exp(

2πi · 2
16

) |crosscap⟩ .

This phase is a manifestation of the anomaly of spatial parity∼
time-reversal.

23 / 34



The anomalous phase

S−1TS |crosscap⟩ = exp(
2πi · 2
16

) |crosscap⟩ .

is associated to the operation

B 7→ B, A 7→ A + B

in the geometry

A B .
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RegardingA as the time direction, we see the system on

Rt ×

has the momentum
p =

2

16
mod 1

which is the conserved quantity associated to the isometry.
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In a non-anomalous theory, we have

p = n ∈ Z.

This is because the 2π rotation should not do anything:

exp [2πip] = 1.

In an anomalous theory, this might not hold, because of phase ambiguity:

exp [2πip] ̸= 1.

[Cho-Hsieh-Morimoto-Ryu, 1501.07285]
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For example, on

Rt × ,

a massless Majorana fermion in 3d has [Hsieh-Cho-Ryu,1503.01411]

p =
1

16
mod 1

and we found thatU(3)6 has twice the anomaly

p =
2

16
mod 1.
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ν Majorana fermions in 3d have the anomalous momentum

p =
ν

16
mod 1

on

Rt × .

So ν = 16 fermions do not manifest anomalies in this geometry.

In fact this is a general feature:

Parity anomaly of this type of systems is a Z16-valued quantity.
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To explain this, let us pause for a moment and considerU(1) anomaly in
4d, which is characterized by the anomaly inflow

k 4d chiral fermions→ ← exp[2πik

∫
X

A ∧ F ∧ F ]

The anomaly is characterized by k ∈ Z since

exp(2πi

∫
X

A ∧ F ∧ F )

is a general complex number of absolute value 1.
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In our case, the anomaly is canceled by the anomaly inflow

k 3d Majorana fermions→ ← exp[2πiνηX ]

where the 4d bulk term is the Atiyah-Patodi-Singer η invariant.
[Kapustin-Thorngren-Turzillo-Wang, 1406.7329] [Witten, 1605.02391]

The anomaly is characterized by ν ∈ Z16, since

exp(2πiηX)

of any closed manifold is a 16-th root of unity.
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Summarizing, we noted that the 3d Chern-Simons theory

U(n)2n

is secretly parity invariant, but has an anomaly

ν = 2 ∈ Z16.

We arrived at this result by considering a state

B

×

A

≃ A B .
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Where to go from here?

Firstly, there are things to be cleaned up:

• 3d TQFT on oriented manifold : [Moore-Seiberg “RCFT”] and
[Witten, “QFT and the Jones polynomial”].

• 3d TQFT on oriented manifold with spin structure :
[Bruillard-Galindo-Hagge-Ng-Plavnik-Rowell-Wang, 1603.09294],
[Bhardwaj-Gaiotto-Kapustin, 1605.01640].

• 3d TQFT on non-orientable manifold :
[Barkeshli-Bonderson-Cheng-Jian-Walker, 1612.07792]

But we do not yet have a definitive treatment of 3d TQFT
on non-orientable manifold with pin structure.

Somebody has to do that.
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It’s kind of tricky. For example, inU(3)6, the anyons of type

have the braiding

= − .

But if we put this on the crosscap it is problematic.

= − .

This only happens with non-orientable + spin.

And this makes my head hurt.
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Secondly, more importantly, suppose you want to use matching of
these subtler/new anomalies to constrain the dynamics.
cf. [Gaiotto-Kapustin-Komargodski-Seiberg, 1703.00501]

If the anomaly can be realized by a TQFT,
you can just add it to match the missing anomaly.

So you need to knowwhen an anomaly can be realized by a TQFT.

That’s it! Thanks for your attention.
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