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The main goal is to read off from the experiment 
the answer to

 What is               Yang-Mills? SU(1)

More precisely, we know that large N QCD is a 
theory of free strings. 

Can we solve this free string theory?
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A typical particle physics experiment
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In our case we have

Mike Teper

Andreas Athenodorou

1702.03717, 1609.03873, 1602.07634, 1303.5946, 1103.5854, 1007.4720, … 

Barak Bringoltz
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Let’s divide the question into two parts:

1) What is the worldsheet theory of an infinitely 
long string?

2) If we know the answer to 1) what can we say 
about short strings (glueballs)?
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SETUP

✓Confining gauge theory with a gap        
✓Unbroken center symmetry 

4D theory

2D theory
Energy
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SETUP

✓Confining gauge theory with a gap  
✓Unbroken center symmetry  
✓Large N 

4D theory

2D theory
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Figure 7: Energy of the SU(3) flux tube as a function of length for the ground state
in black and for the two particle states in red, blue, green and dark green for 0��,
0++, 2+� and 2++ states respectively. The data is taken from [7]. The solid lines
show the theoretical predictions derived from phase shift (45) with the best fit value
corresponding to 2++ fits (darker colors) and 2+� fits (lighter colors). Shorter dashing
indicates Goldstone momenta above 1.85`

s

, where the one loop contribution becomes
equal to the tree level one.

where, as before, �3 = (3, 1,�1) for scalar, symmetric, and pseudoscalar channels. We
included the two loop phase space factor (2⇡)�2, so that one expects A and B to be order
one. Note that we did not include higher derivative corrections to the cubic vertex (29) of
the form

`4
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because by using integrations by parts and field redefinitions they can be reduced to the
change in the couplings Q

a

, A and B. A fit to the SU(3) data with these two new additional
parameters results in central values for Q

a

, A and B presented in Table 1. We see that the
best fit value of Q

a

is practically una↵ected for the fit involving the 2+� tensor state, and
shifts by ⇠ 12% for the fit involving the 2++ state. We take this shift as an estimate of the
theoretical uncertainty. Due to the lack of data points we did not perform a fit involving
two-loop terms for SU(5) data.

Note that this shift is to large extent driven by a single data point corresponding to
the energy of the shortest string in the scalar channel, which is not fitted well by the two
parametric model with m and Q

a

alone. Several factors may contribute to this, such as
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Lattice provides us with a finite volume 
spectrum of the worldsheet theory

spin 2

scalar

pseudoscalar

D = 4 SU(3)
scalar

Theory curves:  
ground state: sum of universal            terms 

Lüscher ’81 
Lüscher, Weisz ’04 

Aharony, Komargodski et al ’09-13 

excited states:  TBA calculations  SD, Flauger, Gorbenko’13 

`s/R

8



0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

pℓs
δ

 TBA allows to reconstruct scattering phase 
shift

1 2 3 4 5

2

4

6

8

R/ℓs

ΔE
ℓ s TBA

D = 3 SU(6)

e2i� = ei`
2
ss/4

9



Experimental summary (long strings)
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‣D=4
field content X1 , X2 �

Goldstones pseudoscalar 
“worldsheet axion”

S = SNG[X
1, X2] +

Z
d2�

1

2
@↵�@

↵�� 1

2
m2�2 +Q�✏↵�✏ijK

i
↵�K

j �
� + . . .

action

m`s ⇡ 1.85+0.02
�0.03 Q ⇡ 0.38± 0.04

‣D=3
field content X

Goldstone
action S = SNG[X] + . . .
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Can a worldsheet theory be integrable?  

✓To get an idea of what one might expect 

✓By now we have a few examples of integrable 
higher dimensional conformal theories (N=4 SYM, 
ABJM). This looks as a natural definition of an 
integrable higher-dimensional confining theory 

✓One may expect QCD string to be somewhat 
simple in the UV. Simple=Integrable? 

why this question?
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Can a theory of Goldstones only be 
integrable?  

Yes, at D=3 or 26
Ward identities of non-linearly realized Poincare

plus integrability determine

e2i�(s) = eis`
2
s/4

Finite volume spectrum from TBA 

E(N, Ñ) =

s
4⇡2(N � Ñ)2

R2
+

R2

`4
+

4⇡

`2

✓
N + Ñ � D � 2

12

◆

At D=26 this a critical bosonic string
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A simple option to restore integrability at general D

Sstring = �`�2
s

Z
d2�

q
�det(⌘↵� + @↵Xi@�Xi + @↵�@��) +Q

Z
d2��R[X] + . . .

Q =

r
25�D

48⇡

This is also known as a linear dilaton background. 
A conventional  path to non-critical strings.

e2i�(s) = eis`
2/4
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Another simple option to restore integrability at D=4

Sstring = �`�2
s

Z
d2�

q
�det(⌘↵� + @↵Xi@�Xi + @↵�@��) +Q

Z
d2��KK̃ + . . .

Q =

r
25�D

48⇡
=

r
7

16⇡
⇡ 0.373176 . . .

Compare to

???

e2i�(s) = eis`
2/4

Qlattice ⇡ 0.38± 0.04
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Experimental summary (long strings)
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‣D=4
field content X1 , X2 �

Goldstones pseudoscalar 
“worldsheet axion”

S = SNG[X
1, X2] +

Z
d2�

1

2
@↵�@

↵�� 1

2
m2�2 +Q�✏↵�✏ijK

i
↵�K

j �
� + . . .

action

m`s ⇡ 1.85+0.02
�0.03 Q ⇡ 0.38± 0.04

‣D=3
field content X

Goldstone
action S = SNG[X] + . . .

Both at D=3,4 the worldsheet theory looks as a 
deformation of an integrable theory. 

Correct matter content+suggestive numerology 
at D=4. 
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Axionic String Ansatz

QCD String is a deformation of an integrable theory of

Xi and Aij = �Aji

D=4: Goldstones + axion
D=3: Goldstones only

Let us focus on this. What can we tell about short strings? 
For now will try to predict quantum numbers only :

Spin J, Parity P, Charge conjugation C

JC
J 6= 0 : J = 0 : 0PC
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Tensor Square Structure

H
closed short

=
X

N

H
L

(N)⌦H
R

(N).

C : HL ⌦HR $ HR ⌦HL

If massive worldsheet excitations were present:

Hmassive =
X

n

Hn

n  is a number of massive particles at rest
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tions along the string are generated by a combination of the worldsheet translation (which
is a gauge symmetry transformation) and of the target space translation (which is a global
symmetry transformation). As a result, for long strings states with a non-zero spatial mo-
mentum along the winding direction the level matching condition does not hold. Instead,
for short strings one finds the following structure of the Hilbert space,

H
closed short

=
X

N

H
L

(N) ⌦ H
R

(N). (7)

Here N is a “level” of a state, so that H
L(R)(N) is a subspace of left(right) moving states

with a total momentum N along the string. We choose the spatial worldsheet coordinate to
run in the range � 2 [0, 2⇡], so that N takes natural values.

It is straightforward to generalize the structures (6), (7) to the situation when massive
fields are present on the worldsheet, as relevant for the 4D ASA. In this case additional
zero momentum states are present, corresponding to adding n massive particles at rest. For
instance, for short strings one gets then

H
massive

=
X

n

H
n

, (8)

where each of H
n

has the structure of (7).
Clearly, to test the structure (7) against the actual glueball data measured on a lattice,

one needs some assumption about the distribution of glueball masses. For critical (integrable)
strings all states at the same level are degenerate in mass. An approximate integrability of the
ASA makes it then natural to expect that glueballs should come in approximately degenerate
groups ordered by their level.

Then the immediate implication of the structure (7) is that glueball states come in
clusters with multiplicities given by squares of integers. Let us see now what are the possible
quantum numbers inside these clusters. First, note that the spin J and the spatial parity P
can be defined at the level of left- and right-moving states separately. On the other hand,
the charge conjugation C is directly linked to the tensor product structure of the closed
string Hilbert space. Indeed, in a gauge theory the charge conjugation reverses the direction
of path ordered exponents, used to construct glueball states. In the string language this
translates into a spatial parity transformation on a worldsheet, i.e., C acts by exchanging
quantum numbers of left- and right-moving components of a closed string state.

Then in the decomposition of (7) we encounter the following terms,

0P ⌦ 0P = 0++ (9)

0P1 ⌦ 0P2 + 0P2 ⌦ 0P1 = 0(P1P2)+ + 0(P1P2)� (10)

0P ⌦ J + J ⌦ 0P = J+ + J� (11)

J ⌦ J = (2J)+ + 0++ + 0�� (12)

J1 ⌦ J2 + J2 ⌦ J1 = (J1 + J2)
+ + (J1 + J2)

� + |J1 � J2|+ + |J1 � J2|� . (13)

One consequence of these relations is that the leading Regge trajectory—i.e., the set of
maximum spin states at each level—consists of states of even spin. Furthermore, odd spin

11

Multiplication Table
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N Glueball States # of states
0 0 ⌦ 0 = 0++ 1
1 1 ⌦ 1 = 0++ + 0�� + 2+ 4
2 (0 + 2) ⌦ (0 + 2) = 2 · 0++ + 0�� + 2+ + 2� + 4+ 9
3 (0 + 1 + 3) ⌦ (0 + 1 + 3) = 25

3 · 0++ + 2 · 0�� + 1+ + 1� + 2 · 2+ + 2� + 3+ + 3� + 4+ + 4� + 6+

Table 1: Quantum numbers of 3D glueballs at first four levels, as predicted by the
ASA.

where

P(x) =
1Y

n=1

1

1 � xn

(32)

is the Euler generating function for integer partitions. Then the multiplicities of states at
di↵erent levels in HJ can be read o↵ from the Taylor expansion of (31),

P
J

(x) = xJ + xJ+2 + xJ+3 + 2xJ+4 + 2xJ+5 + 4xJ+6 + 4xJ+7 + 7xJ+8 + . . . . (33)

In section 5 we will confirm this result by comparing it to the standard bosonic string
character [55] (see Fig. 6).

It is straightforward to generalize this analysis to D = 4, where additional set of oscilla-
tors, describing perturbations in the transverse direction, are present. Also it is straightfor-
ward to include additional massive states on the worldsheet.

The perturbative analysis above is only guaranteed to work in the semiclassical limit
J ! 1. However, it is natural to try to “analytically continue” these results all the way
down to J = 0. Namely, we include as a part of the ASA the assumption that the generating
function (33) (or its appropriate generalization at D = 4) describes the structure of H

J

for
any J .

Then the structure of the full open string Hilbert space H
open

can be characterized by
the following generating function

P
ASA

(x, ✓) ⌘
X

J2Z

eiJ✓P
J

(x) =
(1 � x)(1 � x2)P(x)

1 + x2 � 2x cos ✓
(34)

The coe�cient in front of xNeih✓ in the Taylor expansion (in x) of P
ASA

(x, ✓) is equal to
the multiplicity of the helicity h open string states at the level N . In Fig. 2 we present the
resulting multiplicities for a number of low lying levels.

The last remaining step to obtain the 3D glueball spectrum, as predicted by the ASA, is
to calculate tensor squares at each level, as explained in section 3.1. Note that the analytic
continuation above apparently does not allow to determine the parity assignment for J = 0
states in H

open

. However, as follows from (9)-(13), this ambiguity may only a↵ect the glueball
spectrum at J = 0 and in a situation when more than one state is present in H

open

at J = 0.

16

Glueball Spin Content

✓ ?!

N=3: 3 states are missing yet, some  
spin determinations are to be performed/confirmed
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Semiclassical Ansatz

H
L

(N) = H
R

(N) = H
open

(N)

H
open

⌘
X

N

H
open

(N) =
X

J2Z

H
J

where

at large J one can use perturbation theory around the 
“rotating rod” 

X0 =
`2sE

⇡
⌧ X1 + iX2 =

`s
2i

r
2J

⇡

⇣
ei�

+

� ei�
�
⌘

extending the semiclassical answer down to J=0 reproduces 
observed quantum numbers 

suggestive of an underlying localization story?
21



To go beyond this heuristics we need a tractable  
path integral  formalism for a single massless boson with

e2i�(s) = eis`
2
s/4

of course, we have the Nambu-Goto action 

SNG = �`�2
s

Z
d2�

p
1 + `2s(@X)2

but it does not look tractable 

22



SD, Gorbenko, Mirbabayi 
1305.6939

pi ⇤ pj = ✏↵�p
↵
i p

�
j

More general construction

“dressed” S-matrix 

recently, formulated in the operator language as

Smirnov, Zamolodchikov, 1608.05499 
Cavaglia, Negro, Szecsenyi, Tateo, 1608.05534

S-matrix of any 2D QFT

Ŝn(pi) = ei`
2/4

P
i<j pi⇤pjSn(pi)

T T̄ deformation
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“Holographic” Form of the Dressing Factor

ei`
2/4

P
i<j pi⇤pj =

Z
DX↵eiSCS [X↵]+

P
i pi↵X↵

SCS = `�2

I
d⌧✏↵�X

↵@⌧X
�

Chern-Simons boundary quantum mechanics
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HolographyNAdS2
… 

Jensen, 1605.06098 
Maldacena, Stanford, Yang, 1606.06098 
Engelsoy, Mertens, Verlinde, 1606.03438 

…

• consider any 2D QFT in a 
rigid            (=Poincare disc)AdS2

•calculate generating functional  
for boundary conformal correlators

• introduce dynamical Jackiw—Teitelboim gravity

ds2 = dr2 + L2 sinh2
r

L
d⌧2

S =

Z p
�g

✓
�(R+

2

L2
)� ⇤+ Lm(g, )

◆

Figure 2: In (a) we see the full AdS
2

space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS

2

space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS
2

. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u+ "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS

2

. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.

5

⌧

O1(⌧1)
O2(⌧2)

O3(⌧3)
O4(⌧4)

O5(⌧5)

O6(⌧6)

Z0[�Oa(⌧)]
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Dressed generating functional

Schwarzian boundary quantum mechanics

Sch(⌧(u)) =
@3
u⌧

@u⌧
� 3

2

✓
@2
u⌧

@u⌧

◆2

Figure 2: In (a) we see the full AdS
2

space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS

2

space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS
2

. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u+ "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS

2

. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.

5

O1(⌧1)
O2(⌧2)

O3(⌧3)

O4(⌧4)

O5(⌧5)

O6(⌧6)

ZJT [�Oa(⌧)] =

Z
D⌧e⇤L2 R

duSch(⌧(u))Z[�Oa (⌧(u))]
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S =

Z p
�g (�R� ⇤+ Lm(g, ))

JT dilaton is a Lagrange multiplier, which forces 
metric to be flat, hence we can write

following partial di↵erential equation

@tEt(n, P,R) = Et(n, P,R)@REt(n, PR) +
P (R)2

R
. (1.6)

Here t is a parameter of the deformation, so that the undeformed spectrum serves as the

initial condition at t = 0. Note that the unusual property of this deformation is that T T̄ is

an irrelevant operator, so the RG trajectory shoots from IR into UV.

As we already said, the principal claim of the current paper is that the gravitational

dressing and the T T̄ deformation are two di↵erent descriptions of the same RG flow, which

can be described also by coupling the undeformed theory to the flat space (i.e., L ! 1) JT

gravity. The parameters of the three constructions are identified as

`�2 = �⇤

2
= t .

Let us explain why this result is natural to expect. The similarity between the flat space

gravitational dressing and the Schwarzian dressing in NAdS
2

holography is manifest. In both

cases all the e↵ects of gravity can be described by introducing a coupling between the non-

gravitational asymptotic observables—be it S-matrix elements or boundary correlators—

with a boundary quantum mechanics. Furthermore, it is easy to see that the boundary

Chern–Simons theory arises naturally in the JT gravity. Indeed, in the bulk the JT dilaton

� plays the role of a Lagrange multiplies, ensuring that the metric is flat (at L = 1). Hence,

at L = 1 the path integral describing a matter system coupled to the JT gravity can be

written schematically as

Z =

Z
DXaD ei

R
d2�

p
�g

f

(�⇤+L
m

( ,g
f

)) , (1.7)

where Lm is the matter Lagrangian and gf is a general flat metric, which can be presented

as

gf↵� = @↵X
a@�X

b�ab .

Hence, the vacuum energy term turns into the action of a topological theory; when integrated

by parts the latter is exactly the boundary Chern–Simons quantum mechanics (1.3) with

`�2 = �⇤

2
. (1.8)

Of course, this heuristic argument fells short of the derivation that the flat space JT gravity

results in the gravitationally dressed amplitudes. In section 2 we will present an actual proof

that this is the case. We will show how the dressing phase shift arises from the JT action
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with

Chern-Simons boundary quantum mechanics

gives

�⇤

Z
d2�

p
�gf = �⇤

2

I
d⌧✏abX

a@⌧X
b

Heuristics of  ei`
2
s

P
pi⇤pj/4 = lim

L!1
NAdS2
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Direct Flat Space Derivation  
Minkowski vacuum

g↵� = ⌘↵� =

✓
0 �1
�1 0

◆
� = �⇤

4
⌘↵��

↵�� =
⇤

2
�+��

Appears inhomogeneous. Why do we expect Poincare 
invariant S-matrix in the first place?

Conformal gauge

degrees of freedom—the JT dilaton plays the role of a Lagrange multiplier, which kills the

only candidate propagating mode of the metric. As we will see now the only role of the JT

gravity is to provide a dynamical system of coordinates.

The first indication for this comes from the following consideration. Why does one

expect to find a Poincaré invariant S-matrix for the scattering around the vacuum (2.1),

(2.2), given that the dilaton field in this vacuum has non-trivial space-time dependence? To

see the answer it is convenient to fix the conformal gauge,

g↵� = e2⌦⌘↵� .

Then the JT action reduces to

SJT =

Z
d�+d�� �

4�@
+

@�⌦� ⇤e2⌦
�
.

This action is invariant under arbitrary holomorphic and antiholomorphic shifts of �,

� ! �+ f(�+) + g(��) .

We see now that the vacuum (2.1), (2.2) is invariant under the combination of the coordinate

translations

�± ! �± + a±

with the Galilean shifts of the dilaton

� ! �� ⇤

2
(a+�� + a��+) .

Note that, at least for the purpose of the scattering problem, this prescription is well-defined,

because the conformal gauge fixing on a plane does not leave any residual gauge freedom if

one also imposes g↵� ! ⌘↵� at infinity. The only conformal transformations preserving this

property are those from the Poincaré subgroup. The latter is a physical global (rather than

gauge) symmetry of the scattering2.

This situation is analogous to the worldsheet scattering for the critical string. There one

starts with a long string background

X0 = �0 , X1 = �1 ,

which is invariant under the combined shift of the worldsheet and target space coordinates.

2
It will be interesting to study what is the analogue of the BMS symmetry in this case.

8

JT action

degrees of freedom—the JT dilaton plays the role of a Lagrange multiplier, which kills the

only candidate propagating mode of the metric. As we will see now the only role of the JT

gravity is to provide a dynamical system of coordinates.

The first indication for this comes from the following consideration. Why does one
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Then, using X0 and X1 as physical coordinates, one obtains the worldsheet S-matrix de-

scribed by the dressing formula (1.1), applied to a system of 24 massless free bosons repre-

senting the transverse string coordinates [1]. In the Polyakov gauge this setup is especially

similar to the one encountered in the JT gravity. There, in addition to transverse fields

X i, representing propagating physical modes, one finds an additional topological sector con-

sisting of the Polyakov metric and X0,1, whose only role is to provide a dynamical set of

coordinates. A detailed derivation of the worldsheet S-matrix in the Polyakov formalism3 is

presented in [16]. Let us see what happens if one treats the JT gravity in a similar way.

In the conformal gauge the JT field equations for the metric and the dilaton take the

following form

@2

+

� = �1

2
T
++

(2.3)

@2

�� = �1

2
T�� (2.4)

@
+

@�� =
1

2
(⇤+ T

+�) (2.5)

@
+

@�⌦ = 0 , (2.6)

so that with the above boundary conditions for the metric one finds ⌦ = 0 everywhere. Note

that our energy-momentum tensor is defined as

T↵� = � 2p�g

�S

�g↵�
.

One treats the system (2.3)-(2.6) as a set of operator equations. The matter dynamics in �±

coordinates remains exactly the same as in the absence of gravity. Just as in the Polyakov

case, dressing arises as a consequence of a coordinate change. Namely, we introduce new

dynamical coordinates defined as

X± = 2
@⌥�
⇤

⌘ �± + Y ± ,

where at the last step we separated the vacuum contribution. The motivation for this choice

is that, just as the target space coordinates of a string, X± shift by a constant under the

physical Poincaré translations and reduce to �± at the vacuum.

3
Following the idea by Juan Maldacena.
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Dynamical coordinates of JT gravity

Field equations
Then eqs. (2.3),(2.4),(2.5) turn into

@
+

Y � = �T
++

⇤
, (2.7)

@�Y + = �T��
⇤

, (2.8)

@
+

Y + = @�Y � =
T
+�
⇤

. (2.9)

Here eqs. (2.9) ensure that given Y ± one can always find the corresponding dilaton field �.

As a consequence of the energy-momentum conservation the system (2.7), (2.8), (2.9) always

has a solution. This solution is uniquely defined up to a constant shift. It is natural to pick

this constant in a parity symmetric way, so that

Y ±(� ! �1) = ⌥P±

2⇤
,

where

P± =

Z 1

�1
d�⌥T⌥⌥

are the light cone components of the total 2-momentum carried by the matter. Then, as a

consequence of (2.7), (2.8),

Y ±(� ! 1) = ±P±

2⇤

Consider now a general scattering process taking a set of on-shell momenta {pi} into a set

{qj}4, see Fig. ??. Let us focus on incoming particles, the argument for outgoing ones is

identical. Let us order the incoming momenta by the corresponding rapidities �i’s, so that

�
1

� �
2

� . . . �✓n. For in-states this order is equivalent to the order of particles in space.

Then integrating eqs. (2.7), (2.8) at ⌧ ! �1 we find that at early times

Y ±(⌧ ! �1, �) =
1

2⇤

�⌥P± ± 2P±
L (�)

�
.

Here P±
L (�) is the total momentum of all particles on the left of �. This definition is

ambiguous when � coincides with a position of one of the particles, � = �i. It is natural to

define it there following the central value prescription

P±
L (�i) =

p±i
2

+
X

j<i

p±j .

4
Unlike previously, here we do not treat all momenta as incoming. {qj} is a set of physical momenta

without a sign flip.

10

Matter is unperturbed in     - coordinates�

(conformal gauge)
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Let’s focus on the asymptotic in-region

X

+ = const

X

� = const

With this prescription Y ±(�i) are independent of pi. As we will see momentarily, this is very

reasonable physically, because it eliminates contributions into the phase shift which would

correspond to particles acting upon themselves. Explicitly, at the position of i-th particle

these operators are given by

Y �(pi) =
1

2⇤

�P�
< (pi)� P�

> (pi)
�

(2.10)

Y +(pi) =
1

2⇤

�P+

> (pi)� P+

< (pi)
�
, (2.11)

where P↵
<(pi) (P↵

>(pi)) is an operator which calculates the total momentum of all particles

with smaller (larger) rapidities compared to ✓i. Note that we replaced the dependence of the

operators Y ± on the coordinate �i with the dependence on the particle momentum pi. This

is justified because they depend only on the spatial order of particles, which is completely

determined by the rapidities for the in-states.

Before introducing gravity any matter field  can be decomposed as

 =

Z 1

�1

dpp
2⇡

1p
2E

⇣
a†in(p)e

�ip
↵

�↵

+ h.c.
⌘

(2.12)

in the asymptotic region ⌧ ! �1.

To describe the e↵ect of the JT gravity we need to define the creation operators A†
in(p)

using the dynamical coordinates X± rather than �±. This amounts to

A†
in(p) = a†in(p)e

ip
↵

Y ↵

(p) = a†in(p)e
�i(p+Y �

(p)+p�Y +
(p)) . (2.13)

It is straightforward to check that these operators commute

[A†
in(p), A

†
in(p

0)] = 0 ,

as it should be for creation operators. Hence, when creating an in-state we can put them in

an arbitrary order. It is convenient to order them according to the rapidities, so that

|{pi}, inidressed =
n
inY

i=1

A†
in(pi)|0i = e�

i

2⇤

P
i<j

p
i

⇤p
j |{pi}, ini .

The argument for out-states proceeds in exactly the same way, but results in an opposite

sign in the final answer for Y ± (i.e., in the analogues of (2.10), (2.11)). Indeed, out-going

particles are antiordered in space according to their rapidities, which translates into a sign

11
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are operators which add up momenta of all 
particles with smaller (larger) rapidities
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Before gravity
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Dressed in-states
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Dressed out-states
flip in the dressing phase,

|{qi}, outidressed =
n
outY

i=1

A†
out(qi)|0i = e

i

2⇤

P
i<j

q
i

⇤q
j |{qi}, outi .

Finally for the dressed S-matrix we get

Ŝ ⌘ dressedhout, {qi}|{pi}, inidressed = hout, {qi}|{pi}, inie� i

2⇤

P
i<j

q
i

⇤q
je�

i

2⇤

P
i<j

p
i

⇤p
j

or, equivalently, it can be written as the operator product

Ŝ = USU , (2.14)

where

U |{pi}i = e�
i

2⇤

P
i<j

p
i

⇤p
j |{pi}i .

As discussed in [2], as a consequence of the momentum conservation, (2.14) is equivalent

to (1.1) provided the relation (1.8) holds. Note that in the form (2.14) the unitarity of

the dressed S-matrix is manifest, while the initial expression (1.1) is explicitly crossing

symmetric.

2.2 Perturbative Scattering and the T T̄

The presented derivation of the S-matrix proceeds in a somewhat unconventional way. It is

instructive to see how the gravitational scattering arises perturbatively in a more familiar

language. Namely, let us consider the quadratic action for small metric h↵� and dilaton '

perturbations around the vacuum (2). It takes the following form

S(2)

JT =

Z
'
�
@2

+

h�� + @2

�h++

� 2@
+

@�h+�
�
+

⇤

4
(h

++

h�� � 2h2

+�)

+
⇤

4

�
�+h

++

(2@�h+� � @
+

h��) + ��h��(2@+h+� � @�h++

)
�

+
1

2
h
++

T�� +
1

2
h��T++

+ h
+�T+� . (2.15)

Metric and dilaton do not contain any propagating degrees of freedom. Hence, we can

exclude them using their field equations and this will lead to a local interaction for matter

12

Dressed S-matrix

Q.E.D.

Ŝ ⌘ dressedhout, {qi}|{pi}, inidressed = e

� i
2⇤

P
i<j pi⇤pj

S
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The same result can be obtained by taking the flat 
space limit of the Schwarzian dressing

S({�i}) = lim
�i!1

h�1/2
1 V1(�1) . . .�

1/2
n Vn(�n)i

holographic LSZ

a nice toy: one can explicitly take the flat limit of  AdS holography
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R is dynamical. Corresponds to integrating over total length 
of the boundary. This action appears non-local (cf Euclidean 
wormholes?). However, locality is back in the static gauge. 

Sb = ⇤L2

I
du

✓
cosh

r �R0

L
� 1

2

e
R0�r

L r02
◆

Schwarzian dressing needs to be modified to reproduce the 
correct (and unitary) S-matrix

Sb =
⇤L2

2

⇣
e

R�R0
L + e�

R�R0
L SSch

⌘
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S =

Z p
�g (�R� ⇤+ Lm(g, ))

JT gravity

is an example of a “degravitating” theory. 
Vacuum energy does not affect the space-time 

geometry. Instead, it results in the UV 
modification of flat space scattering

`�2
s = �⇤/2
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Summary
✓Lattice QCD provides a rare experimental window 
into quantum gravity (in 2D) 

✓YM glueballs walk, talk and quack as closed 
strings (at least in 3D)  

✓We finally have a promising tractable action for an  
integrable approximation to the worldsheet theory 

                                                                                                        

✓Hopefully, we are approaching the stage when the 
progress can be made by theorists on their own. 
However, an input from lattice is very welcome. 

S3D =

Z p
�g

✓
�R+ 2`�2

s � 1

2
(@X)2

◆
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