F-theory and ${\rm AdS}_3/{\rm CFT}_2$

Sakura Schäfer-Nameki

Strings 2017, Tel Aviv, June 28, 2017

1705.04679 in collaboration with Chris Couzens, Craig Lawrie, Dario Martelli, Jin-Mann Wong

Chris Couzens Craig Lawrie Dario Martelli Jenny Wong

Ben Assel

Related work 1610.03663 with:

and 1612.05640 with:

Craig Lawrie Timo Weigand

1. Motivation

Strings (2d SCFTs) from D3-branes in F-theory; and the holographic duals: new AdS_3 solutions in F-theory.

Motivation 1: F-theory

F-theory is IIB with varying $\tau = C_0 + ie^{-\phi}$. [Vafa][Morrison, Vafa] On elliptically fibered Calabi-Yau Y_n : minimal susy in $12 - 2n$ dimensions

$$
\mathbb{E}_{\tau} \to Y_n \to B_{n-1}.
$$

Latest developments: constructions/classifications of new SCFTs:

6d: Classification of 6d (1,0) SCFTs from F-theory on CY three-folds [Heckman, Morrison, Vafa]

4d: Model Building for $N = 1$ SUSY (see String Pheno 2017); SCFTs?

2d: (0,2) F-theory vacua [SSN, Weigand][Apruzzi, Heckman, Hassler, Melnikov]

Motivation 1: Wrapped D3-branes in F-theory

F-theory is IIB with varying $\tau = C_0 + ie^{-\phi}$. . [Vafa][Morrison, Vafa] On elliptically fibered Calabi-Yau Y_n : minimal susy

 $\mathbb{E}_{\tau} \to Y_n \to B_{n-1} \supset C$.

Latest developments: constructions/classifications of new SCFTs:

6d: Classification of 6d (1,0) SCFTs from F-theory on CY three-folds [Heckman, Morrison, Vafa]

 \rightarrow tensionless strings are diagnostic for superconformal invariance

- # 4d: Model Building for $N = 1$ SUSY (see String Pheno 2017); SCFTs?
- # 2d: (0,2) F-theory vacua [SSN, Weigand][Apruzzi, Heckman, Hassler, Melnikov] \rightarrow D3s for tadpole cancellation $[C_{D3}] = \frac{1}{24} c_4 (CY_5) - \frac{1}{2}$ $\frac{1}{2} G_4 \wedge G_4$

Cartoon of Setup:

Questions:

- # How to characterize wrapped D3-branes in F-theory?
- # What 2d SCFTs do we get?
- # Do these 2d SCFTs have AdS $_3$ duals in F-theory?

Motivation 2: AdS/CFT

- # After 20 years: exploring new AdS/CFT applications/setups still going strong
- # Much progress towards classifications of AdS_d solutions in 11d sugra, (massive) IIA, IIB.
- # Today: focus on ${\rm AdS}_3/{\rm CFT}_2.$ Many known IIB solutions with constant τ : D1-D5: $AdS_3 \times S^3 \times T^4$ [Maldacena '97] D1-D5-D5' $AdS_3 \times S^3 \times S^3 \times S^1$ [Giveon, Kutasov, Seiberg] D3 [Kim][Benini, Bobev]]

I will discuss new ${\rm AdS}_3$ Solutions of IIB supergravity with varying axio-dilaton ("F-theory") dual to 2d (0,4) SCFTs from wrapped D3-branes in F-theory on CY three-folds.

F-theory meets AdS/CFT

- D3-D7-setups in IIB orientifolds
- 4d $\mathcal{N} = 1, 2$ SCFTs from D3s in Ftheory at constant τ [Fayyazuddin, Spalinski]
- Classification of 6d (1,0) SCFTs [Heckman, Morrison, Vafa]
- New $(0, 2)$ and $(0, 4)$ 2d SCFTs from D3s [Haghighat, Murthy, Vafa, Vandoren],[Lawrie, SSN, Weigand]
- AdS/CFT with 7-branes
- $AdS_5 \times S^5/\Gamma$ orbifold, $\Gamma = \mathbb{Z}_n$, $n =$ 3, 4, 6, 8, 12 [Aharony, Fayyazuddin, Maldacena]
- AdS₇ solutions in M/IIA [Apruzzi, Gaiotto, Passias, Tomasiello...]
- $AdS_3 \times S^3 \times B$ with varying τ [Couzens, Lawrie, Martelli, SSN, Wong]

Plan

- 1. Motivation \checkmark
- 2. 2d SCFTs from F-theory
- 3. AdS_3 Holography in F-theory
- 4. Application: Central charges
- 5. Outlook

2. 2d SCFTs from D3-branes in F-theory

[Martucci][Assel, SSN] [Haghighat, Murthy, Vafa, Vandoren][Lawrie, SSN, Weigand]

D3-branes in IIB vs. F-theory

D3-brane effective theory in Type IIB string theory: N=4 SYM with $\tau = \frac{\theta}{2\pi}$ $\frac{\theta}{2\pi}+i\frac{4\pi}{g^2}$ $\frac{4\pi}{g^2}=\tau_1+i\tau_2$

Perturbative Type IIB:

- # D3-branes on $\mathbb{R}^{1,1}\times C$ \subset ${\rm CY}$ [Bershadsky, Johanson, Sadov, Vafa][Benini, Bobev]
- # Topological twist:

 $SO(1,3)_L \rightarrow SO(1,1) \times U(1)_C$ twisted with $U(1)_R \subset SU(4)_R$

⇒ Sigma-model into Hitchin moduli space

F-theory (varying τ):

- # $N = 4$ SYM with varying coupling τ : undergoes $SL_2\mathbb{Z}$ monodromy $\tau \rightarrow \frac{a\tau+b}{c\tau+d}$
- # Under $SL_2\mathbb{Z}$, Q and \tilde{Q} transform under a $U(1)_D$ [Kapustin, Witten]

$$
Q^{\dot{m}} \to e^{-\frac{i}{2}\alpha(\gamma)}Q^{\dot{m}} \qquad \text{where} \quad e^{i\alpha(\gamma)} = \frac{c\tau + d}{|c\tau + d|}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2\mathbb{Z}
$$

$$
\hat{\phi^i} \rightarrow \hat{\phi^i}, \quad \lambda_\pm^{\dot m} \rightarrow e^{\mp \frac{i}{2}\alpha(\gamma)}\lambda_\pm^{\dot m}, \quad F_{\mu\nu}^{(\pm)} = \sqrt{\tau_2}(F \pm \star F)/2 \rightarrow e^{\mp i\alpha(\gamma)}F_{\mu\nu}^{(\pm)}.
$$

Cf. bonus symmetry for abelian $N = 4$ SYM [Intrilligator] ⇒ Topologial duality twist: $U(1)_D$ and $U(1)_C$ twisted with $U(1)_R \subset SU(4)_R$ [Martucci][Assel, SSN]

Fields transform as sections of line bundle \mathcal{L}_D , with connection $\mathcal{A}_D = d\tau_1/2\tau_2.$

Works explictly for $G = U(1)$, but to generalize: dualize to M5s.

Duality Twist from 6d

{6d (2,0) theory on $\mathbb{E}_{\tau} \times \mathbb{R}^4$ } = { $N = 4$ SYM on \mathbb{R}^4 with coupling τ } Generalization:

{6d (2,0) theory on elliptic fibration} = { 4d $N = 4$ SYM with varying τ }

Standard Topological Twist on Kähler manifold of the 6d (2,0) theory

 $=$ Topological duality twist of 4d N=4

Advantage: can be generalized to non-abelian theory [Assel, SSN]

6d $(2,0)$ Theory on Elliptic Surface C \cup

Symmetries: $SO(1,5)_L \times Sp(4)_R \subset OSp(6|4)$

Standard topological twist:

$$
SO(1,5)_L \to SO(1,1)_L \times SU(2)_\ell \times U(1)_\ell: \qquad \mathbf{4} \to \mathbf{2}_{0,1} \oplus \mathbf{1}_{1,-1} \oplus \mathbf{1}_{-1,-1}
$$

$$
Sp(4)_R \to SU(2)_R \times U(1)_R: \qquad \mathbf{4} \to \mathbf{2}_1 \oplus \mathbf{2}_{-1}
$$

Twist on Kähler surface: $N = (0, 4)$, cf. [Maldacena, Strominger, Witten]

$$
T_{U(1)_{\text{twist}}} = T_{U(1)_{\ell}} + T_{U(1)_R}
$$

Specializing to an elliptic Kähler surface \widehat{C} , with base C. Fibration:

$$
\omega^{\mathbb{E}_{\tau}}=\frac{d\tau_1}{2\tau_2}=\mathcal{A}_D
$$

Thus: $T_{U(1)_\ell} = T_{U(1)_C} + T_{U(1)_D}$ and the top twist for the M5-brane on Kähler surface becomes topological duality twist and can be generalized to non-abelian case. [Assel, SSN]

Including 7-branes

 Δ = discriminant locus of elliptic fibration ('7-branes')

Intersections with 7-branes \Rightarrow 3-7 strings.

M5-brane dual:

Extra (1,1)-forms from rational curves in Kodaira fibers above Δ

Localized chiral modes: $d\mathcal{B}_2=\mathcal{H}_3=\star\mathcal{H}_3=\sum \partial_{\bar{z}}b_id\bar{z}\wedge \omega_i^{(1,1)}$ $\partial_z b_i = 0$

Duality defects, where τ undergoes an $SL_2\mathbb{Z}$ monodromy

[Ganor][Witten][Martucci][Assel, SSN]

Example: Strings in F-theory on CY_3

Description either in terms of duality twisted 4d $N = 4$ SYM on $C \times \mathbb{R}^{1,1}$ [Haghighat, Murthy, Vafa, Vandoren][Lawrie, SSN, Weigand] or dual M5 wrapped:

$$
SO(1,5)_L \times Sp(4)_R \rightarrow SU(2)_l \times SO(3)_T \times SO(1,1)_L \times U(1)_{twist}
$$

\n
$$
\mathcal{H}_3^+ : \quad (\overline{10},1) \rightarrow (3,1)_{-2,0} \oplus (1,1)_{2,2} \oplus (1,1)_{2,0} \oplus (1,1)_{2,-2} \oplus (2,1)_{0,1} \oplus (2,1)_{0,-1}
$$

\n
$$
\Phi^{ij} : \quad (1,5) \rightarrow (1,1)_{0,2} \oplus (1,1)_{0,-2} \oplus (1,3)_{0,0}
$$

\n
$$
Q^i, \rho^i : \quad (\overline{4},4) \rightarrow (2,2)_{-1,1} \oplus (2,2)_{-1,-1} \oplus (1,2)_{1,2}
$$

\n
$$
\oplus (1,2)_{1,0} \oplus (1,2)_{1,0} \oplus (1,2)_{1,-2} \Rightarrow (0,4) SUSY
$$

After twist, fields become forms on $\widehat{C}\text{:}$ 2_1 and 2_{-1} under $SU(2)_l \times U(1)_{\rm twist}$ correspond to sections of $\Omega^{0,1}(\widehat{C})$ and $\Omega^{1,0}(\widehat{C})$

Spectrum of 2d $(0,4)$ from M5 on C \bigcup $\subset CY_3$

 \widehat{C} = $\widehat{C} = \mathbb{E}_{\tau} \to C$ = elliptic fibration restricted to C :

$$
y^2 = x^3 + fx + g, \quad f \in \Gamma(\mathcal{L}^4), \ g \in \Gamma(\mathcal{L}^6), \qquad \mathcal{L} = K_B^{-1}|_C
$$

Central Charges

Direct computation from 6d $(2, 0)$ on the elliptic surface $\widehat{C} = \mathbb{E}_{\tau} \to C$ times $\mathbb{R}^{1,1}$:

$$
c_R = 3C \cdot CN^2 + 3c_1(B) \cdot CN + 6
$$

$$
c_L = 3C \cdot CN^2 + 9c_1(B) \cdot CN + 6
$$

From spectrum computation for one M5 [MSW][Vafa][Lawrie, SSN, Weigand]

Likewise: can be derived from duality twisted $N = 4$ SYM. Requires incorporating the duality defect modes (3-7 strings) by hand

$$
\delta c_L^{\text{defect}} = 8c_1(B) \cdot C
$$

From the M5 approach: automatically included from reduction of B . Clearly: main open question here is: non-abelian generalization.

Strings in 4d and 2d F-theory Compactifications

[Lawrie, SSN, Weigand]

CY_4 Duality twist $N = (0, 2)$:

$$
c_R = 3(g + c_1(B_3) \cdot C + h^0(C, N_{C/B_3}))
$$

\n
$$
c_L = 3(g + h^0(C, N_{C/B_3})) + c_1(B_3) \cdot C + 8c_1(B) \cdot C
$$

CY_5 Duality twist $N = (0, 2)$: No M5 picture, but M2

$$
c_L = 3(g + h^0(C, N_{C/B_4}) - 1) + 9c_1(B_4) \cdot C
$$

$$
c_R = 3(g + c_1(B_4) \cdot C + h^0(C, N_{C/B_4}) - 1)
$$

Application to 2d $(0,2)$ vacua from CY_5 compactifications of F-theory [SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation requires D3-branes wrapped on curves in the class (for $G_4 = 0$)

$$
C = \frac{1}{24} c_4(Y_5)|_{B_4}
$$

BPS-equations and Hitchin moduli space

For τ constant, $N=4$ SYM on $C\times\mathbb{R}^{1,1}$ with Vafa-Witten twist, gives rise to a sigma-model into the Hitchin moduli space, which for the abelian case is just flat connections. [Bershadsky, Johansen, Sadov, Vafa] In duality-twisted theories the BPS equations along C that we find are

$$
\mathcal{F}_{\mathcal{A}} = \frac{1}{2} \Big(\bar{\partial}_{\mathcal{A}} (\sqrt{\tau_2} a) - \partial_{\mathcal{A}} (\sqrt{\tau_2} \bar{a}) \Big) = 0
$$

where $A = A_D$, and the internal components of the gauge field a, \bar{a} are

$$
\sqrt{\tau_2} \bar{a} \in \Gamma(\Omega^{0,1}(C, \mathcal{L}_D^{-1}))
$$

$$
\sqrt{\tau_2} a \in \Gamma(\Omega^{0,0}(C, K_C \otimes \mathcal{L}_D))
$$

In particular, for this abelian setup, the theory is a sigma-model into $U(1)_D$ -twisted flat connections.

 \rightarrow "duality twisted Hitchin moduli space"

3. ${\rm AdS}_3/{\rm CFT}_2$ in F-theory

[Couzens, Lawrie, Martelli, SSN, Wong]

$AdS₃$ in F-theory

Starting point: IIB with $G_3 \equiv 0$ but $d\tau \neq 0$

$$
ds^{2} = ds^{2}(AdS_{3}) + ds^{2}(M_{7}) \qquad F_{5} = (1 + \star)\text{vol}(AdS_{3}) \wedge F^{(2)}
$$

Implies: Killing vector ∂_{ψ}

$$
ds^{2}(M_{7}) = (d\psi + \rho)^{2} + ds^{2}(M_{6})
$$

where M_6 and τ combine into "auxiliary" M_8

$$
ds^{2}(M_{8}) = \frac{1}{\tau_{2}}((dx + \tau_{1}y)^{2} + \tau_{2}^{2}dy^{2}) + ds^{2}(M_{6})
$$

such that

$$
\Box_8 R_8 - \frac{1}{2} R_8^2 + R_{8ij} R_8^{ij} = 0
$$

General solution unknown, but we can impose additional supersymmetry.

AdS_3 dual to $(0,4)$ in F-theory

Imposing $(0, 4)$ supersymmetry implies:

 $M_8 = S^2 \times Y_3$, $Y_3 =$ elliptically fibered Calabi-Yau 3-fold

In summary: the most general F-theory solution dual to $(0, 4)$ in 2d is

$$
AdS_3 \times S^3/\Gamma \times (\mathbb{E}_\tau \hookrightarrow Y_3 \to B_2), \qquad F^{(2)} = J_B
$$

- # τ = complex structure of \mathbb{E}_{τ} J_B = Kähler form on B_2 , discrete $\Gamma \subset SU(2)$
- # Physical type IIB compactification space is $\text{AdS}_3 \times S^3 / \Gamma \times B_2$ B_2 = Kähler surface
- # $\,B_{2}$ constrained by the existence of an elliptic fibration with Weierstrass model, dP_n , F_n , blowups thereof or Enriques [Grassi][Gross]

Properties of the Solution

$$
AdS_3 \times S^3 \times (\mathbb{E}_\tau \hookrightarrow Y_3 \to B_2)
$$

- Supersymmetry: Killing spinors transform as 2 of $SU(2)_r \subset SO(4)_T$ acting on S^3 \Rightarrow R-symmetry is $SU(2)_r$ of the (0,4) small SCA
- Can allow also for S^3/Γ retaining $(0,4)$ supersymmetry.
- $\Gamma = \mathbb{Z}_M$: additional MKK-monopoles \Rightarrow F-theory brane-setup in: $Y_3 \times \text{TN}_M \times \mathbb{R}^{1,1}$.
	- ⇒ Special case of F-theory on CY 5-folds

4. Central Charges

[Couzens, Lawrie, Martelli, SSN, Wong]

Holographic Central Charges in IIB/F

• Leading order by Brown-Henneaux

$$
c_L^{(2)} = c_R^{(2)} = 3 \frac{R_{\text{AdS}_3}}{2G_N^{(3)}}
$$

=
$$
3N^2 \frac{\text{vol}(S^3/\mathbb{Z}_M)\text{vol}(B_2)32\pi^2}{\text{vol}(S^3/\mathbb{Z}_M)^2} = 6N^2 M \text{vol}(B_2)
$$

- $N = 5$ -form flux quantum through $S^3/\mathbb{Z}_M \times C$, $C \subset B_2$
- Computation of volume of B_2 :

Fact: The metric on B_2 is singular (cf. Stringy Cosmic Strings [Greene, Shapere, Vafa, Yau]), as τ of the elliptic fibration can become singular. The metric on Y_3 is smooth.

Compute in Y_3 : B_2 is a divisor (section of the fibration) and its volume is

$$
\text{vol}(B_2) = \frac{1}{2} \int_{Y_3} \omega_0 \wedge \pi^* J_B \wedge \pi^* J_B
$$

where $\omega_0 = (1,1)$ form dual to B_2 and $\pi: Y_3 \rightarrow B_2$.

• Algebro-geometrically: $vol(B_2) = \frac{1}{2} \int_B J_B \wedge J_B = \frac{1}{2}$ $\frac{1}{2}C\cdot_B C$, where C = curve dual (in *B*) to J_B

$$
c_L^{(2)} = c_R^{(2)} = 3N^2MC \cdot C
$$

• Subleading order: CS-coupling of 7-branes:

$$
c_L^{(1)} - c_R^{(1)} = 6Nc_1(B_2) \cdot C \, .
$$

and level of R-symmetry $k_R = c_R/6$ from gauging of the $SO(4)_T$ isometry of the S^3 ($M=1$)

$$
k_R^{(1)} = \frac{1}{2} N c_1(B) \cdot C
$$

• For $M = 1$: c_{L}^{AdS} $^{AdS}_{L}=3N^{2}C\cdot C+9Nc_{1}(B)\cdot C$ c_R^{AdS} $A^{dS}_{R} = 3N^2C \cdot C + 3Nc_1(B) \cdot C$.

NB: manifestly $c_R \in 6\mathbb{Z}$ using adjunction.

• Comparison to spectrum of $N = 4$ SYM on $\mathbb{R}^{1,1} \times C$ with duality twist

$$
c_L^{spec} = 3C \cdot C + 9c_1(B) \cdot C + 6, \qquad c_R^{spec} = 3C \cdot C + 3c_1(B) \cdot C + 6.
$$

Spectrum computation includes center of mass mode $(c_L, c_R) = (4, 6)$, which decouples in the IR:

$$
c_L^{AdS}|_{N=1} = 3C \cdot C + 9c_1(B) \cdot C + O(N^0)
$$

$$
c_R^{AdS}|_{N=1} = 3C \cdot C + 3c_1(B) \cdot C.
$$

matches spectrum for $N = 1$ in first two leading orders. c_R exact result (see also match with self-dual string anomaly in 6d), but c_L gets corrections of $O(1)$.

- What is M ? S^3/\mathbb{Z}_M is the near-horizon of TN_M
	- \Rightarrow Dual brane-setup is N D3-branes + M KK-monopoles
	- \Rightarrow $M = 1$ has same near horizon as no KK monopole
	- \Rightarrow Central charge for general M: M-theory dual.

Cross-Check 1: Anomalies of Self-dual Strings in 6d

F-theory on CY_3 gives a 6d (1,0) theory. Wrapped D3s are self-dual strings in this 6d theory. (Here: no KK monopoles). Global symmetry transverse rotations and R-symmetry: $SU(2)_R \times SU(2)_L \times SU(2)_I$. Anomaly polynomial in our setup: [Berman, Harvey][Shimizu, Tachikawa]

$$
I_4 = c_2(R) \left[\frac{1}{2} N^2 C \cdot C + \frac{1}{2} N c_1(B) \cdot C \right] + c_2(L) \left[-\frac{1}{2} N^2 C \cdot C + \frac{1}{2} N c_1(B) \cdot C \right] + c_2(I) [N] - \frac{1}{24} p_1(T) [6N c_1(B) \cdot C] ,
$$

Coefficients determine $c_L - c_R = 6Nc_1(B) \cdot C$ and levels $k_I = N$ and

$$
k_R = \frac{1}{2}N^2C \cdot C + \frac{1}{2}Nc_1(B) \cdot C
$$

$$
k_L = -\frac{1}{2}N^2C \cdot C + \frac{1}{2}Nc_1(B) \cdot C
$$

No mixing between $SU(2)$'s and $SU(2)_R$ is IR R-symmetry so that $c_R = 6k_R$ by the standard $N = 4$ SCA. Would be interesting to include KK monopole to extend comparison.

Cross-check 2: M-theory Dual

M/F-duality:

```
{M-theory on elliptic CYY} = { F-theory on Y \times S^1 }=\{IIB \text{ on } B \times S^1 \text{ with varying } \tau\}
```
T-duality along the Hopf-fiber of S^3/\mathbb{Z}_M and M-theory uplift of our solution yields

M-theory on
$$
AdS_3 \times S^2 \times Y_3
$$
, $G_4 = \text{vol}(S^2) \wedge J_Y$

where Y_3 has a smooth Ricci-flat Kähler metric. Falls into 'classification' of $AdS_3 \times S^2$ solutions of M-theory in [Colgain, Wu, Yavartanoo] Flux is given by Kähler form, so M5s wrap ample divisor (dual to $(1, 1)$) form in the Kähler cone)

- $N = \text{flux through } \widehat{C} = \mathbb{E}_{\tau} \to C \to D3s$ on C
- $M = flux$ through base $B_2 \rightarrow KK$ monopoles

 \Rightarrow M5s wrap ample divisor $P = MB_2 + N\widehat{C}$

Central Charge from M-theory

Two related approaches:

M5-brane anomaly polynomial: $I_4 = \int_P I_8$

[Harvey],[± Freed, Harvey, Minasian, Moore]

- # Holographic central charge for $AdS_3\times S^2\times Y_3$
	- Leading order from Brown-Henneaux:

$$
(c_L^{11})^{(3)} = (c_R^{11})^{(3)} = 3N^2MC \cdot C - 3NM^2c_1(B) \cdot C + M^3(10 - h^{1,1}(B))
$$

• Subleading order from CS coupling in 11d

$$
\int_{M_{11}} C_3 \wedge X_8, \qquad X_8 = \text{Tr}[\mathcal{R}^4] - \frac{1}{4} (\text{Tr}[\mathcal{R}^2])^2
$$

\n
$$
\Rightarrow (c_L - c_R)^{(1)} = 6Nc_1(B) \cdot C + M(h^{1,1}(B) - 4).
$$

• Level of small $N = 4$ SCA for $AdS_3 \times S^2 \times Y_3$

[Kraus, Larsen][Hansen, Kraus]

$$
k_r = \frac{N^3}{6} C_{IJK} k^I k^J k^K + \frac{N}{12} \int_{Y_3} J_{Y_3} \wedge c_2(Y_3)
$$

where C_{IJK} = triple intersection numbers, $J_Y = \sum k^I \omega_I^{(1,1)}$ I = 1 2 $MN^2C \cdot C +$ 1 2 $N(2-M^2)c_1(B)\cdot C+$ 1 6 $(M^3(10-h^{1,1}(B))+M(h^{1,1}(B)-4))$

Central charges for general N, M :

$$
c_L^{11} = 3N^2MC \cdot C + 3N(4 - M^2)c_1(B) \cdot C + M^3(10 - h^{1,1}(B)) + 2M(h^{1,1}(B) - 4)
$$

$$
c_R^{11} = 3N^2MC \cdot C + 3N(2 - M^2)c_1(B) \cdot C + M^3(10 - h^{1,1}(B)) + M(h^{1,1}(B) - 4)
$$

Agrees for $M = 1$ with F-theory/D3 analysis. Would be interesting to generalize the latter to include the KK-monopole and compare with this result.

Summary

Started exploring new testing ground for AdS/CFT within F-theory:

Holography in F-theory, with focus on ${\rm AdS}_3/{\rm CFT}_2$

Particularly nice setup:

wrapped D3s in F-theory on elliptic CY3, where both sides are computationally accessible

- # $N = 4$ SYM with varying τ + duality defects: chiral 2d SCFT
- # Holographic dual within F-theory, i.e. AdS solutions with holomorphically varying τ , that undergoes $SL_2\mathbb{Z}$ monodromy
- # Checks: dual M-theory solution and comparison of central charges via spectrum and anomalies

Outlook

Future directions:

- # Field theory side: Duality defects, in particular for non-abelian $N = 4$ SYM
- # Holography:

 AdS_3 dual to $(0,2)$ (dual to D3s on CY4/5), $(2,2)$ susy, three-form fluxes.

AdS_6 :

recent work on 5d SCFTs and IIB solutions with non-trivial τ monodromy [D'Hoker, Gutperle, Uhlemann → Uhlemann's talk]

New AdS_5 solutions? Generalizing known F-theory at constant coupling ones [Aharony, Fayyazuddin, Maldacena]

Backup Slides: M5 anomaly

Anomaly polynomial for N M5s: anomaly from chiral field \mathcal{B}_2 , has to be cancelled from the bulk \Rightarrow CS term in 11d action:

$$
I_8[N] = NI_8^{\text{free}}[1] + \frac{1}{24}(N^3 - N)p_2(\mathcal{N})
$$

$$
I_8^{\text{free}}[1] = \frac{1}{48} \left[p_2(\mathcal{N}) - p_2(W) + \frac{1}{4}(p_1(W) - p_1(\mathcal{N}))^2 \right]
$$

 $TW =$ tangent bundle of worldvolume W of the M5s $\mathcal{N} = SO(5)_R$ normal bundle transverse to W in 11d

Anomaly polynomial I_4 for string from M5 on P : integrate over $P \subset Y$ splitting

$$
TW = TP \oplus TW_2\,,\qquad {\cal N} = {\cal N}_P \oplus {\cal N}_{SO(3)_T}
$$

The anomaly of the strings is upon integration over P

$$
I_4[N] = \int_P I_8[N] = NI_4[1] + \frac{1}{24}(N^3 - N)P^3 p_1(N_3)
$$

$$
I_4[1] = \int_P I_8[1] = \frac{1}{48} [2P^3 p_1(N_3) + c_2(Y_3) \cdot P(p_1(W_2) + p_1(N_3))]
$$

From this we can be read off:

• Gravitational Anomaly:

$$
I_4 \supset \frac{c_L - c_R}{24} p_1(W_2) \qquad \Rightarrow \qquad c_L - c_R = \frac{1}{2} N c_2(Y_3) \cdot P
$$

• Level k_3 of the $SO(3)_T$

$$
I_4 \supset \frac{k_3 p_1(\mathcal{N}_3)}{4} \qquad \Rightarrow \qquad k_3 = \frac{1}{6} N^3 P^3 + \frac{1}{12} N c_2(Y_3) \cdot P
$$

Imposing that $[P] = M[B] + N[\widehat{C}]$ we obtain

$$
c_L - c_R = 6Nc_1(B) \cdot C + M(h^{1,1}(B) - 4)
$$

\n
$$
k_3 = \frac{1}{2}MN^2C \cdot C + \frac{1}{2}N(2 - M^2)c_1(B) \cdot C
$$

\n
$$
+ \frac{1}{6}(M^3(10 - h^{1,1}(B)) + M(h^{1,1}(B) - 4))
$$

 \Rightarrow Agrees for $M = 1$ at leading and subleading order in N with F-theory.

A note on ampleness: $\bullet\bullet\bullet$

A bundle over X is very ample if the global sections define embedding of X to projective space. Ample if some tensor power of the bundle does so $(D \text{ ample if dual } (1,1) \text{ form is}$ inside the Kähler cone').

- MSW: If *P* is very ample, then $SO(3)_T$ is R-symmetry and $c_R = 6k_3$.
- LSMSW: From AdS dual we see this is the case more generally for any ample divisor
- Implies: we cannot have $M = 0$ as this would not result in an ample divisor. I.e. there is no AdS dual to M5-brane on \widehat{C} only.