
New N = 4 theories in four dimensions

Iñaki García Etxebarria

with B. Heidenreich and D. Regalado



Classifying N = 4 theories

Known N = 4 theories in four dimensions are classified by a choice
of gauge group G (with algebra g), and some discrete θ angles.
[Aharony, Seiberg, Tachikawa ’13]

A prototypical example is su(2)→ {SU(2), SO(3)± = (SU(2)/Z2)±}
(triplet of SL(2,Z)).

In the case of N = 4 the structure of point operators is insensitive to the
choice of theory, they only depend on g. One can detect the difference by
studying the partition function on four-manifolds with H2(M4, C) 6= 0,
or by studying the properties and correlators of extended operators.



Holography and relative theories

What is the holographic interpretation of the possible variants?

We view the possible theories on the boundary as states in the
Hilbert space of the bulk theory, taking the radial direction as
“time”. [Friedan, Shenker ’87], [Verlinde ’88], [Moore, Seiberg ’88],
[Witten ’89], . . . , [Witten ’98], . . . , [Belov, Moore], . . .

The partition function on each theory/state |ψ〉 is

Zψ(τ) = 〈ψ|Z(τ)〉 (1)

for some |Z(τ)〉 to be described momentarily, the “partition vector”.

Theories that can be understood in such a way are known as relative
QFTs. [Freed, Teleman ’12] Famous examples are the chiral boson in 2d,
the (0, 2) theory in 6d, and IIB string theory.

4d N = 4 SYM can also be understood in this way.



Quantization of the bulk TQFT
(Following [Witten ’98])

The reduction of IIB on S5 gives an effective action

LCS =
N

2πi

∫
X5

B2 ∧ dC2 . (2)

In order to specify the boundary conditions, in addition to specifying
the vevs of local gauge invariant operators, we need to specify

α =

∫
S
B2 ; β =

∫
S
C2 (3)

for any S ⊂M4 near the boundary, X5 ≈ R×M4. The equations
of motion are

dB2 = dC2 = 0 (4)

and B2, C2 are canonically conjugate (B = C = 0 is disallowed!):

[Bij(x), Ckl(y)] = −2πi

N
εijklδ

4(x− y) . (5)



Quantization of the bulk TQFT
(Following [Witten ’98])

Define operators measuring the flux

ΦRR(S) = exp

(
i

∫
S
C2

)
; ΦNS(T ) = exp

(
i

∫
T
B2

)
. (6)

They do not commute:

ΦRR(S)ΦNS(T ) = ΦNS(T )ΦRR(S) exp

(
2πi

N
S · T

)
. (7)

The inequivalent operators are parameterized by classes in
H2(M4,ZN ), so the group of operators acting on the Hilbert space
is the finite Heisenberg group W in

0→ ZN →W → H2(M4,ZN )NS ×H2(M4,ZN )RR → 0 . (8)



Quantization of the bulk TQFT
(Following [Witten ’98])

Up to redefinitions W has a single representation. It can be
constructed starting from a maximal isotropic subspace I, i.e. a
maximal commuting set of operators Φ(w).

(For the remainder of the talk:
polarization of H ≡ maximal isotropic sublattice of H.)

For any such I there is a unique state |ΩI〉 (up to normalization)
such that

Φ(w) |ΩI〉 = |ΩI〉 ∀w ∈ I . (9)
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Quantization of the bulk TQFT
(Following [Witten ’98])

There is also a basis {|w〉I} that diagonalizes Φ(w) for w ∈ I:

Φ(w)
∣∣w′〉I = ωw·w′

N

∣∣w′〉I for w ∈ I (10)

Φ(w)
∣∣w′〉I =

∣∣w′ + w
〉
I for w ∈ J (11)

where ωN = exp(2πi/N), and H = I ⊕ J .

We take the choice of duality frame where

|Z(τ)〉 =
∑

w∈H2(M4,ZN )

Zw(τ) |w〉NS (12)

with Zw(τ) the partition function of N = 4 SU(N)/ZN in the
sector with Stiefel-Whitney class w. [Witten ’09] [Tachikawa ’13]

So the choice of I specifies over which w ∈ H2(M4,ZN ) to sum.



The (0, 2) viewpoint

It is very natural to rephrase the previous discussion in terms of the
6d (0, 2) AN−1 theory. [Witten ’98] Holographically, the key term is

L = N

∫
X7

C3 ∧ dC3 + . . . (13)

In this context the choice of theory is given by a maximal commuting
sublattice of H3(M6,ZN ).

All the previous discussion can be reproduced in this language, if we
chooseM6 =M4 × T 2. The theories in [Aharony, Seiberg, Tachikawa
’13] appear as polarizations of the T 2 factor. [Tachikawa ’13]



Spectrum of extended operators

A basic distinction for line operators is whether a surface attached
to the line needs to be specified for defining the line operator. If
not, we say that the operator is genuine. [Kapustin,Seiberg ’14]

If we have a gauge group G, Wilson lines in representations of G are
genuine, and we then find the genuine magnetically charged lines by
imposing mutual locality.

This can also be understood without reference to a gauge group: consider
two surface operators D,D′ with boundary L. We say that L is genuine
if S = D −D′ cannot measure the fluxes in I, for any choice of D,D′.



A self-dual N = 4 su(2) theory?

Recently Argyres and Martone proposed the existence of a N = 4
theory with algebra su(2) which is completely invariant under
SL(2,Z), as part of their work on the classification of rank-1
N = 2 SCFTs. [Argyres, Martone ’16]

If it exists it implies the existence of new N = 2 and N = 3 theories via
discrete gaugings of various subgroups of SL(2,Z).

Such a theory should be associated with a polarization I = I(2)NS ⊕ I
(2)
RR of

H2(M4,ZN )NS ×H2(M4,ZN )RR, with I(2) a maximal isotropic
sublattice of H2(M4,Z2) of half-rank.

I(2) exists for any closed smooth orientable Spin fourfold (without
torsion).
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On the intersection form of four-manifolds

We takeM4 to be closed, orientable, smooth and Spin (and having
no torsion in H3(M4,Z), to make our lifes simpler).

A result of Donaldson [Donaldson ’83] [Donaldson ’87] shows that any
such manifold has intersection form over Z given in some basis by

Q = (−C(E8))⊕m ⊕H⊕n (14)

with C(E8) the Cartan matrix of E8 and

H =

(
0 1
1 0

)
. (15)

So the problem of existence of a I(2) reduces to the existence of a
half-rank polarization of C(E8). . .

Which obviously does not exist (in
general) over Z, since C(E8) is definite positive!
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Existence of I(2)

No obvious no-go in Z2: signature and positivity are ill-defined.

C(E8) =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


. (16)
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Existence of I(2)

An easy exercise shows that S(C(E8)/2Z)St = H⊕4, with

S =



1 1 1 0 1 0 1 1
0 1 1 0 1 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0
1 1 0 0 1 0 1 0
1 0 0 0 0 0 0 1


. (18)

So, over Z2

Q = (−C(E8))
⊕m ⊕H⊕n → H⊕(4m+n) =

(
0 1
1 0

)⊕(4m+n)

(19)

as already remarked by [Vafa, Witten ’94].



Partition function for I = I(2)
NS ⊕ I

(2)
RR

|Ω〉 =
∑

w∈H2(M,Z2)

cw |w〉 (20)

in the Stiefel-Whitney (NS) basis. For u ∈ I(2)NS we have

Φ(u) |Ω〉 =
∑

w∈H2(M,Z2)

(−1)u·wcw |w〉
!

= |Ω〉 (21)

so cw = 0 if w /∈ I(2). Then, for u ∈ I(2)RR

Φ(u) |Ω〉 =
∑

w∈I(2)
cw |w + u〉 !

= |Ω〉 (22)

implies that cv = cw for all v, w ∈ I(2). So we have

〈Z(τ)|Ω〉 =
∑

w∈I(2)
Zw(τ) . (23)



Partition function on K3
As a quick check, we can compute explicitly the partition function
on K3. [Vafa, Witten ’94] We have that

Zw(τ) =


Z0 = 1

4G(q2) + 1
2

[
G(q1/2) +G(−q1/2)

]
if w = 0

Ze = 1
2

[
G(q1/2) +G(−q−1/2)

]
if w 6= 0,P(w) = 0

Zo = 1
2

[
G(q1/2)−G(−q−1/2)

]
if w 6= 0,P(w) = 2

(24)
with G(q) ≡ η(q)−24, q = exp(2πiτ), and P(w) the Pontryagin square.

We find that if P(w) = 0 for all w ∈ I(2) (X), the partition function

ZI(2)(τ) = Z0(τ) + (211 − 1)Ze(τ) (25)

is SL(2,Z) invariant. (Or rather, appropriately covariant.)

In fact, this is the only combination of the form

Z(a,b,c)(τ) = aZ0(τ) + bZe(τ) + cZo(τ) (26)

which is SL(2,Z) invariant, up to overall normalization.
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Extension to other primes
The construction works for any prime N . Consider

G[N ] =

(
I4 +N(2N + 1)J4 2N2J4

2N2J4 I4 +N(2N − 1)J4

)
. (27)

with I4 the 4× 4 identity matrix, and (J)ij = 1. It is easy to check
that det(G[N ]) = 1, the matrix is positive definite, and that for
N ∈ 2Z+ 1 the associated bilinear form is even. So under a change
of basis in Z this must be equivalent to C(E8). On the other hand,

G[N ] = I8 mod N . (28)

Since, modulo a prime a2 + b2 = −1 always has a solution, we can
introduce ẽ1 = ae1 + be2, ẽ2 = −be1 + ae2 to obtain

G[N ] =

(
I4
−I4

)
(29)

Proving G[N ] = H⊕4 mod N from here is trivial.
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Conclusions

I showed the existence of new polarizations (giving self-dual
theories) on smooth oriented closed Spin manifolds without
torsion. The theories are best understood in the context of
relative QFTs, or holography.
So “non-genuine”, but still interesting, and useful:

Starting point for constructing new N = 2 and N = 3
theories. [Argyres, Martone ’16]
Duality defects from the AN (0, 2) theory on T 2 → X6 → B4,
with II, IV , II∗ or IV ∗ singularities over divisors of B4.
Modular invariant theories on T 2 from reduction of the AN
(0, 2) theory on theM4 factor ofM4 × T 2.



Open questions

Global p-form symmetries.
Existence of the isotropic polarization of C(E8) for all N .
Classification of variants, other than the self-dual case.
Incorporate torsion in H3(M4,Z).
Other gauge algebras.
Gluing.





Reproducing the AST classification

The classification of [Aharony, Seiberg, Tachikawa ’13] can be
understood from this viewpoint [Tachikawa ’13]:

Consider the polarization IT 2 ⊗H2(M4,ZN ), with IT 2 a polarization of
H1(T 2,ZN ). We have H1(T 2,ZN ) = Z2

N , so the conditions of
maximality and Dirac quantization in AST map to maximality and
isotropy of IT 2 .

Examples:

{(1, 0), (2, 0), . . . , (N − 1, 0)} ↔ I = H2(M4,ZN )NS

7→ SU(N)

{(0, 1), (0, 2), . . . , (0, N − 1)} ↔ I = H2(M4,ZN )RR

7→ (SU(N)/ZN )0

{a(N, 0) + b(0, N)} ↔ I = NH2(M4,ZN )RR +NH2(M4,ZN )NS

7→ (SU(N2)/ZN )0



SL(2,Z) invariance of the partition function on M
In general, the partition function

∑
w∈I Zw(τ) is SL(2,Z) invariant

for a polarization I with P(w)/2 = 0 ∀w ∈ I: [Vafa, Witten ’94]

Zw(τ + 1) = ω
P(w)/2
N Zw(τ) (30)

Zw(−1/τ) = N−b2/2
∑

u∈H2(M,ZN )

ωu·wN Zu(τ) (31)

with b2 = dimH2(M,R) and ωN = exp(2πi/N). This holds, since

∑
w∈I

ωw·uN =

{
0 if u /∈ I
|I| = N b2/2 if u ∈ I

(32)

so

∑
w∈I

Zw(−1/τ) = N−b2/2
∑

u∈H2(M,ZN )

(∑
w∈I

ωu·wN

)
Zu(τ) =

∑
w∈I

Zw(τ) .

(33)


	Additional material

