Fractional quantum Hall effect and duality Dam Thanh Son (University of Chicago) Strings 2017, Tel Aviv, Israel June 26, 2017 ### Plan - Fractional quantum Hall effect - Halperin-Lee-Read (HLR) theory - Problem of particle-hole symmetry - Dirac composite fermion theory - Consequences, relationship to field-theoretic duality ### References DTS, arXiv:1502.03446 Wang, Senthil, 1505.05141 Metlitski, Vishwanath, 1505.05142 Geraedts et al. 1508.04140 Karch, Tong, 1606.01893 Seiberg, Senthil, Wang, Witten, 1606.01989 • • • • Landau levels of 2D electron in B field _____ n=3 _____ n=2 _____ n=I Landau levels of 2D electron in B field Landau levels of 2D electron in B field $$\nu = \frac{n}{B/2\pi}$$ Landau levels of 2D electron in B field Filling fraction $$\nu = \frac{n}{B/2\pi}$$ ### Lowest Landau level $$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$ ### Lowest Landau level $$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$ ### Lowest Landau level $$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b \rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$ $$H = P_{\rm LLL} \sum_{a,b} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$ Projection to lowest Landau level # Why the FQH problem is hard - Problem of degenerate perturbation theory - Starting point: exponentially large number of degenerate states - Any small perturbation lifts the degeneracy - no small parameter - Experimental hint from late 80s: gapless state at v=1/2, - nontrivial low-energy effective theory - late 80s early 90s: idea of composite fermion - electron = CF with 2 attached flux quanta - Experimental hint from late 80s: gapless state at v=1/2, - nontrivial low-energy effective theory - late 80s early 90s: idea of composite fermion - electron = CF with 2 attached flux quanta (Wilczek 1982, Jain 1989) Halperin Lee Read 1993 Halperin Lee Read 1993 Halperin Lee Read 1993 Zero B field for @ Halperin Lee Read 1993 Zero B field for @ CFs form a Fermi liquid; HLR theory # HLR field theory $$\mathcal{L} = i\psi^{\dagger}(\partial_0 - iA_0 + ia_0)\psi - \frac{1}{2m}|(\partial_i - iA_i + ia_i)\psi|^2 + \frac{1}{2}\frac{1}{4\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda}$$ $$b = \nabla \times a = 2 \times 2\pi \psi^{\dagger} \psi$$ "flux attachment" mean field: $$B_{\text{eff}} = B - b = B - 4\pi n$$ $$\nu = \frac{1}{2}$$ $$B_{\text{eff}} = 0$$ # Reality of composite fermion confirmed in experiment (Kang et al, 1990) (Kamburov et al, 2014) # 2 features of HLR theory - Number of CFs = number of electrons (by construction) - Chern-Simons term ada - For a long time it was thought that the HLR theory (zoomed in the near Fermi surface region) gives the correct low-energy effective theory - problems were known - one problem turns out to be crucial # Particle-hole symmetry $$\Theta|\text{empty}\rangle = |\text{full}\rangle$$ $$\Theta c_k^{\dagger} \Theta^{-1} = c_k$$ $$\Theta i \Theta^{-1} = -i$$ $$\nu \rightarrow 1 - \nu$$ exact symmetry the Hamiltonian on the LLL, when mixing of higher LLs negligible # PH symmetry in HLR - HLR Lagrangian does not have any symmetry that can be identified with PH symmetry ~1997 - The problem was considered "hard" as it requires projection to lowest Landau level - PH conjugation acts nonlocally # Sharpening the problem - Consider a 2-component massless Dirac fermion - Can realize fractional quantum Hall effect - Natural particle-hole symmetry at zero density ### FQHE for Dirac fermion - FQHE for Dirac fermion sharpens the problem of particle-hole symmetry: - Half filled Landau level at zero charge density - ground state should be a Fermi liquid, volume of Fermi sphere ~ magnetic field - Luttinger's theorem: Fermi volume = charge density - which charge density? # Dirac composite fermion **DTS 2015** electron theory $$\mathcal{L} = i\bar{\psi}_e \gamma^\mu (\partial_\mu - iA_\mu) \psi_e$$ CF theory $$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda}$$ Note: no ada number of CFs ≠ number of electrons consistent with a large number of exp. constraints # Particle-vortex duality original fermion ψ magnetic field density composite fermion $\psi_{ m e}$ density magnetic field $$S = \int d^3x \left[i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda} \right]$$ $$\rho = \frac{\delta S}{\delta A_0} = -\frac{b}{4\pi}$$ $$\frac{\delta S}{\delta a_0} = 0 \longrightarrow \langle \psi \bar{\gamma}^0 \psi \rangle = \frac{B}{4\pi}$$ Fermi sphere from B # (Particle-hole)² On a single Landau level On a single Landau level $$\Theta^2 = (-1)^{M(M-1)/2}$$ On a single Landau level $$\Theta^2 = (-1)^{M(M-1)/2}$$ $$M = 2N_{\rm CF}$$ $$\Theta^2 = (-1)^{N_{\rm CH}}$$ On a single Landau level $$\Theta^2 = (-1)^{M(M-1)/2}$$ $$M = 2N_{\rm CF}$$ $$\Theta^2 = (-1)^{N_{\rm CF}}$$ Natural for Dirac CF Geraedts, Zaletel, Mong, Metlitski, Vishwanath, Motrunich; Levin, Son # More careful version of duality $$\mathcal{L} = i\bar{\psi}_e \gamma^\mu (\partial_\mu - iA_\mu) \psi_e$$ $$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{2}\frac{1}{4\pi}ada + \frac{1}{2\pi}adb - \frac{2}{4\pi}bdb + \frac{1}{2\pi}Adb - \frac{1}{2}\frac{1}{4\pi}AdA$$ Naively integrating over b: $b = \frac{1}{2}(A + a)$ $$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - a_{\mu})\psi + \frac{1}{4\pi}Ada$$ Seiberg, Senthil, Wang, Witten, 1606.01989 # Consequences of DCF - Satisfies symmetry constraints on transport coefficient (conductivity, thermoelectric) at half filling - A gapped particle-hole symmetric state: PH-Pfaffian - Absence of Friedel oscillations in correlation of PHsymmetric operators Geraedts et al. # Consequences of PH symmetry $$\mathbf{j} = \sigma_{xx}\mathbf{E} + \sigma_{xy}\mathbf{E} \times \hat{\mathbf{z}} + \alpha_{xx}\nabla T + \alpha_{xy}\nabla T \times \hat{\mathbf{z}}$$ $$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$ $$\text{conductivities} \qquad \text{thermoelectric}$$ $$\text{coefficients}$$ At exact half filling, in the presence of particle-hole symmetric disorders $$\sigma_{xy} = \frac{e^2}{2h} \qquad \qquad \alpha_{xx} = 0$$ HLR $$\rho_{xy} = \frac{2h}{e^2}$$ Potter, Serbyn, Vishwanath 2015 ### PH Pfaffian state - The composite fermions can form Cooper pairs - Simplest pairing does not break particle-hole symmetry $$\langle \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta} \rangle \neq 0$$ # Consequences of Dirac CF Suppression of Friedel oscillations in correlations of particle-hole symmetric observables $\hat{O}=(\rho-\rho_0)\nabla^2\rho$ Geraedts, Zaletel, Mong, Metlitsky, Vishwanath, Montrunich, 2015 Direct proof of Berry phase π of the composite fermion # A window to duality - Fermionic particle-vortex duality is a consequence of a more "elementary" fermion-boson duality Karch, Tong; Seiberg, Senthil, Wang, Witten - small N version of duality between CS theories, tested at large N - New dualities can be obtained - Example: Nf=2 QED3 is self-dual Cenke Xu # The elementary duality $$\mathcal{L} = L[\psi, A] - \frac{1}{2} \frac{1}{4\pi} A dA$$ $$\mathcal{L} = L[\phi, a] + \frac{1}{4\pi}ada + \frac{1}{2\pi}Ada$$ # Conclusion and open questions - Dirac CF solves the 20-year old problem of PH symmetry of half-filled Landau level - Distinct predictions, numerically checked - A experimentally accessible window to fieldtheoretical duality between (2+1) dimensional theories