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• Fractional quantum Hall effect

• Halperin-Lee-Read (HLR) theory

• Problem of particle-hole symmetry

• Dirac composite fermion theory
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Why the FQH problem is hard

• Problem of degenerate perturbation theory

• Starting point: exponentially large number of 
degenerate states

• Any small perturbation lifts the degeneracy

• no small parameter



Flux attachment

• Experimental hint from late 80s: gapless state at 
ν=1/2, 

• nontrivial low-energy effective theory

• late 80s - early 90s: idea of composite fermion

• electron = CF with 2 attached flux quanta
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Fermi liquid at nu=1/2
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CFs form a Fermi liquid; HLR theory

Halperin Lee Read 1993



HLR field theory

mean field: 

L = i †(@0 � iA0 + ia0) � 1

2m
|(@i � iAi + iai) |2 +

1

2

1

4⇡
✏µ⌫�aµ@⌫a�

b = r⇥ a = 2⇥ 2⇡ † 

Be↵ = B � b = B � 4⇡n

“flux attachment”

⌫ =
1

2
Be↵ = 0



Reality of composite fermion confirmed in experiment 
(Kang et al, 1990)

modulates the effective magnetic field B! experienced by
the CFs in the vicinity of ν ¼ 1=2. The modulated magnetic
field leads to commensurability oscillations, seen in Fig. 1,
flanked by shoulders of higher resistivity [9–14]. The
resistance minima appear at the well-established magnetic
commensurability condition: 2R!

C=a ¼ iþ 1=4, where
i ¼ 1; 2; 3;…; a is the period of the modulation, R!

C ¼
ℏk!F=eB

! is the CF cyclotron radius, k!F ¼
ffiffiffiffiffiffiffiffiffiffi
4πn!

p
is the CF

Fermi wave vector, and n! is the CF density [9–14]. If
we assume that n! is equal to the 2D electron density n on
both sides of ν ¼ 1=2, the above commensurability con-
dition predicts resistance minima at effective fields B!

i ¼
$½2ℏ

ffiffiffiffiffiffiffiffiffiffi
4πn!

p
&=½eaðiþ 1=4Þ& that are symmetric around

B! ¼ 0 (i.e., around B1=2). These B!
i , which are marked

with solid vertical lines labeled i ¼ 1; 2; 3 in Fig. 1,
agree with the experimental data for B > B1=2, especially
for i ¼ 1 where the deepest minimum is seen. The
commensurability minima for B < B1=2, however, appear
to the right of the expected values, as is clearly seen in
Fig. 1(b).
On the other hand, if we assume that, for B < B1=2, CFs

in the LLL are formed by the minority carriers, i.e., holes,
the commensurability condition predicts the dashed vertical
lines in Fig. 1(b), which show better agreement with the
experimental data. We elaborate on these observations in
the remainder of the Letter. We emphasize that the field
positions of the FQHSs we observe in the same sample
are quite consistent with those expected based on the filling
factors and the 2D electron density, as seen by the vertical
dotted lines in Fig. 1(a) [17]. This is true for the FQHSs
observed on both sides of ν ¼ 1=2.

Under the assumption that the density of CFs is equal to
the density of the minority carriers in the LLL [see insets to
Fig. 1(b)], the expected B!

i for CF commensurability for
B > B1=2 are the same as before because the minority carrier
density equals n. For B < B1=2, however, according to our
assumption, the CF density is equal to the density of holes in
the LLL: n! ¼ ð1 − ν=νÞn. Using this n! in the CF com-
mensurability condition leads to a quadratic equation for the
expected positions B!0

i of the commensurability minima
whose relevant solution can be approximated as B!0

i ≃ B!
i þ

B!2
i =B1=2 [18]. In this expression, we are giving B!0

i in terms
of B!

i for the case when n! ¼ n. The expression for B!0
i

implies that, for B < B1=2, the minima should be seen closer
to B1=2 by ≃B!2

i =B1=2. The calculated values of B!0
i for i ¼

1; 2; 3 are shown in Fig. 1(b) with vertical dashed lines, and
are in good agreement with the B < B1=2 experimental data.
Having established a possible explanation for the asym-

metry in the positions of the CF commensurability resis-
tance minima, we now consider data from samples with
different parameters. In Fig. 2, we show data from four
2DES samples. Their density, QW width, and modulation
period are given next to each trace, and the expected
positions of the CF commensurability minima are indicated
with vertical solid and dashed lines. The observed positions
of the minima in all traces show an asymmetry, which is
well captured by the minority density model. In the
a ¼ 400 nm trace, the minima appear very close to
ν ¼ 1=2 and are nearly symmetric, as are the predicted
positions from both models.
The asymmetry of the CF commensurability minima is

not unique to 2DESs. It persists in 2DHSs whose data are
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FIG. 1 (color online). (a) Magnetoresistance trace for a 2DES with density n ¼ 1.74 × 1011 cm−2 and subjected to a periodic potential
modulation, exhibiting strong CF commensurability oscillations near ν ¼ 1=2. The inset schematically shows the commensurability
condition of the quasiclassical CF cyclotron orbits, marked as i ¼ 1, 2, and 3, with a periodic potential modulation. Dotted vertical lines
mark the expected positions of the FQHSs, based on the 2D electron density. (b) The CF commensurability oscillations are shown in
greater detail. Vertical solid lines mark the expected positions of the resistance minima when the CF density (n!) is assumed to be equal
to the electron density; these positions are symmetric about ν ¼ 1=2. If n! equals the minority density, then the expected positions for the
B < B1=2 side are those shown with dashed vertical lines. The schematic insets indicate the basis of the CF minority density model
which assumes that CFs are formed by the minority carriers in the LLL (hatched parts of the broadened level).
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2 features of HLR theory

• Number of CFs = number of electrons 
(by construction)

• Chern-Simons term ada



• For a long time it was thought that the HLR theory 
(zoomed in the near Fermi surface region) gives the 
correct low-energy effective theory

• problems were known

• one problem turns out to be crucial



Particle-hole symmetry

PH symmetry

exact symmetry the Hamiltonian on the LLL, when mixing 
of higher LLs negligible 

⌫ ! 1� ⌫

⇥|emptyi = |fulli

⇥c†k⇥
�1 = ck

⇥ i⇥�1 = �i



PH symmetry in HLR

• HLR Lagrangian does not have any symmetry that 
can be identified with PH symmetry ~1997

• The problem was considered “hard” as it requires 
projection to lowest Landau level

• PH conjugation acts nonlocally



Sharpening the problem

• Consider a 2-component massless Dirac fermion

• Can realize fractional quantum Hall effect

• Natural particle-hole symmetry at zero density

0

E



FQHE for Dirac fermion

• FQHE for Dirac fermion sharpens the problem of 
particle-hole symmetry:

• Half filled Landau level at zero charge density

• ground state should be a Fermi liquid, volume of 
Fermi sphere ~ magnetic field

• Luttinger’s theorem: Fermi volume = charge density

• which charge density?



Dirac composite fermion

L = i ̄e�
µ(@µ � iAµ) eelectron theory

L = i ̄�µ(@µ � iaµ) � 1

4⇡
✏µ⌫�Aµ@⌫a�CF theory

DTS 2015

Note: no ada 
          number of CFs ≠ number of electrons
         consistent with a large number of exp. constraints



Particle-vortex duality
original fermion 𝜓 composite fermion 𝜓e

magnetic field density

density magnetic field

�S

�a0
= 0 �! h �̄0 i = B

4⇡

S =

Z
d

3
x


i ̄�

µ(@µ � iaµ) � 1

4⇡
✏

µ⌫�
Aµ@⌫a�

�

⇢ =
�S

�A0
= � b

4⇡

Fermi sphere from B



(Particle-hole)2

Θ

Θ

⇥2 = ±1
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Necessity of Dirac CF

On a single Landau level

M = 2NCF ⇥2 = (�1)NCF

⇥2 = (�1)M(M�1)/2

1 2 3 M...

Natural for Dirac CF

Geraedts, Zaletel, Mong, Metlitski, Vishwanath, Motrunich; Levin, Son



More careful version of duality

L = i ̄e�
µ(@µ � iAµ) e

L = i ̄�µ(@µ � iaµ) � 1

2

1

4⇡
ada+

1

2⇡
adb� 2

4⇡
bdb+

1

2⇡
Adb� 1

2

1

4⇡
AdA

Naively integrating over b: b =
1

2
(A+ a)

L = i ̄�µ(@µ � aµ) +
1

4⇡
Ada

Seiberg, Senthil, Wang, Witten, 1606.01989



Consequences of DCF

• Satisfies symmetry constraints on transport 
coefficient (conductivity, thermoelectric) at half filling

• A gapped particle-hole symmetric state: PH-Pfaffian

• Absence of Friedel oscillations in correlation of PH-
symmetric operators Geraedts et al.



Consequences of PH symmetry

• At exact half filling, in the presence of particle-hole 
symmetric disorders

j = �
xx

E+ �
xy

E⇥ ẑ+ ↵
xx

rT + ↵
xy

rT ⇥ ẑ

conductivities thermoelectric
coefficients

�
xy

=
e2

2h
↵
xx

= 0

HLR Potter, Serbyn, Vishwanath 2015⇢
xy

=
2h

e2



PH Pfaffian state

• The composite fermions can form Cooper pairs

• Simplest pairing does not break particle-hole 
symmetry 

h✏↵� ↵ �i 6= 0



Consequences of Dirac CF

5

FIG. 5. The extinction of 2k
F

backscattering off PH-symmetric im-
purities. A QH bilayer with chemical potential imbalance µ allows
us to continuously tune from a PH-symmetric model (µ = 1) to a
PH-broken one (µ finite). We compute the correlation function of
a PH-even operator hPqP�qi for q

y

=

2⇡
L

y

at L
y

= 13 and plot
its derivative with respect to q

x

to bring out singularities. At the
PH-symmetric point, there are many singularities in q

x

(see App. D
for analysis), but noticeably absent is any kink at |q| = 2k

F

. This
demonstrates the Dirac structure of the CF Fermi surface: P is even
under PH, while scattering a CF across the Fermi surface to its an-
tipode is PH-odd in the Dirac theory. At finite chemical potential µ
the bilayer setup explicitly breaks PH symmetry, and a kink at 2k

F

continuously reappears.

(see App. D), the result is perfectly smooth in the vicinity of
the (already measured) momentum corresponding to this exact
2k

F

backscattering. We also confirm the absence of the exact
backscattering in the PH-symmetric model for a wider cylin-
der with L

y

= 16 which realizes five-wire CFL (see App. D).
If the absence of the 2k

F

backscattering is truly due to the
PH symmetry, rather than some peculiarity of P , we expect
that the backscattering should return if PH symmetry is ex-
plicitly broken. We break PH symmetry by adding a second
quantum well at a distance 1`

B

above the first, with Coulomb
intra- and inter-well interactions. The second well has a chem-
ical potential µ relative to the first one, and electrons can tun-
nel between the wells. When µ = 1, electrons remain in the
first well, and we recover PH symmetry. As µ decreases, elec-
trons tunnel to the second well, breaking PH symmetry, which
should induce backscattering.

In Fig. 5 we show data confirming this hypothesis for L
y

=
13. The tunneling strength is fixed at t = 0.01 in units of
e2/(4⇡✏`

B

). The system remains in an effectively one-well
CFL phase for µ > 0.05 [for smaller µ the system becomes a
Halperin (331) state]. As µ is decreased within the CFL phase,
the 2k

F

singularity reappears. Note that the measured central
charge of the CFL phase remains unchanged; thus, the gapless
Fermi surface is stable against PH-breaking perturbations (see
also App. I).

Our findings appear to violate the famous 2D fermion dou-
bling theorem: a single time-reversal-symmetric Dirac cone
is anomalous, so cannot be realized in 2D. However, as noted

in Ref. 22 our composite Dirac fermion is coupled to an
emergent gauge-field with unusual compactification condi-
tion, which “cures” the anomaly. The half-filled LLL has
yet another anomalous property. Just as the fully symmet-
ric surface of a topological insulator must be nontrivial—that
is either gapless or topologically ordered—a PH-symmetric
state of the half-filled Landau level must be nontrivial. In-
deed, it must have a Hall conductance of �xy = e

2

2h

, and if the
state is gapped, this requires fractionally charged excitations
and hence topological order. In fact PH here behaves exactly
like time-reversal symmetry on the surface of a 3D topologi-
cal phase (in class AIII—see App. H). How does this occur in
a purely 2D setting? For any symmetry that is locally imple-
mented, one can always obtain a symmetric and trivial product
state. The key observation resolving this apparent paradox is
that PH symmetry of the LLL is special, in that its action is
nonlocal. The nonlocality is ultimately tied to the fact that
the Landau level orbitals '

j

(r) cannot be localized due to the
topological nature of the LLL.

We conclude with a number of open questions of relevance
to both experiment and theory. First, given the experimen-
tal success in observing the phenomenology of a Dirac cone
in TI surfaces and a CF Fermi surface in GaAs, it would be
extremely interesting to find experimental probes of PH sym-
metry and the potential Dirac nature of CFs. Existing experi-
ments are already of some relevance, such as recent measure-
ments in Ref. 43 of CF “geometric resonances” induced by
small deviations of B-field away from half-filling. DMRG
could be of use in guiding and interpreting such experiments,
for instance by computing static structure factors, impurity re-
sponses, and the behavior of the CFL at ⌫ = 1

2

+ �.
Second, Son has proposed a PH-symmetric version of a

paired phase, the “PH-Pfaffian,”20 which has previously been
proposed as the surface topological order of a PH-symmetric
(class AIII) 3D topological superconductor.44 While our re-
sults appear to rule out this possibility in the n = 1 LL of
GaAs, it would be interesting to search for such a phase in
broader phase diagrams of PH-symmetric models.

Last but not least, similar theories with a surface of emer-
gent gapless fermions coupled to an emergent gauge field arise
for other exotic phases with itinerant fractionalized excita-
tions, such as spin liquids with a spinon Fermi sea, Bose-
metals, and electron non-Fermi-liquid metals. Much recent
theoretical effort has aimed to clarify the status of such field
theories,35,45,46 though it remains not fully settled away from
artificially controlled limits. Unbiased numerical studies of
the CFL thus bear directly on open questions for all these
other non-Fermi liquids. Recent numerical studies47 explored
quasi-1D ladder descendants of various non-Fermi liquids.
Thanks to many innovations in the DMRG for FQHE, the
present CFL work goes to effectively much wider strips and
is much closer to the 2D physics than the previous studies. It
would be useful to push the numerical CFL study yet closer to
2D and develop scaling analysis tools for addressing 2D ques-
tions, such as detailed characterization of the 2k

F

singularity
in the structure factor. Time-dependent DMRG could poten-
tially study the dynamical properties of a non-Fermi liquid,
which has not yet been investigated numerically.
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FIG. 1: Semiclassical scattering o↵ a ⇥-invariant smooth impurity. The contributions from the

two classical orbits where the momentum of the particle changes from k to �k clockwise and

counterclockwise must cancel each other exactly.

Particle-hole conjugation and the Berry phase of composite fermions

Having proven the auxiliary theorem, we now turn to the problem of the LLL. We will

use our theorem where the role of ⇥ now played by the particle-hole symmetry, which we

now specify more precisely.

Choose a given basis for one-particle orbitals on the LLL, numbered from 1 to M , with

M being the total number of magnetic flux going through the system. The particle-hole

conjugation ⇥ is an anti-unitary transformation which transform the empty Landau level to

a full Landau level

⇥|emptyi = |fulli ⌘ c†1c
†
2 . . . c

†
M |emptyi (1)

and which exchanges the creation and annhilation operators,

⇥c†k⇥
�1 = ck (2)

Standard manipulations now imply

⇥2|emptyi = c1c2 . . . cMc†1c
†
2 . . . c

†
M |emptyi = (�1)M(M�1)/2|emptyi (3)

In fact, it is easy to demonstrate that any state in the LLL has the same transformation

property under ⇥2:

⇥2|anyi = (�1)M(M�1)/2|anyi, |anyi = c†n1
c†n2

. . . c†nNe
|emptyi (4)

irrespective of Ne (the number of electrons in |anyi).
According to our assumption ii), at half filling states with M flux quanta corresponds to

states in a Fermi liquid of NCF = M/2 composite fermions, for even M . We obtain

⇥2 = (�1)NCF (5)

One now make an assumption

Suppression of Friedel oscillations in correlations of 
particle-hole symmetric observables

Geraedts, Zaletel, Mong, Metlitsky, 
Vishwanath, Montrunich, 2015

Ô = (⇢� ⇢0)r2⇢

Direct proof of Berry phase π of the composite fermion



A window to duality

• Fermionic particle-vortex duality is a consequence 
of a more “elementary” fermion-boson duality 
Karch, Tong; Seiberg, Senthil, Wang, Witten

• small N version of duality between CS 
theories, tested at large N

• New dualities can be obtained

• Example: Nf=2 QED3 is self-dual Cenke Xu



The elementary duality

L = L[ , A]� 1

2

1

4⇡
AdA

L = L[�, a] +
1

4⇡
ada+

1

2⇡
Ada



Conclusion and open questions

• Dirac CF solves the 20-year old problem of PH 
symmetry of half-filled Landau level

• Distinct predictions, numerically checked

• A experimentally accessible window to field-
theoretical duality between (2+1) dimensional 
theories


