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Degrees of  Freedom in QM
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In a finite quantum system there are several well-defined 
ways to quantify the number of degrees of freedom (d.o.f.): 
• Number of arguments of the wave function (finite,        ) 
• Dimension of the Hilbert space: 
• Various measures of quantum entanglement



It is often useful to think of continuum QFTs as arising from 
finite systems with a short-distance (UV) cutoff   . We are 
interested in physical properties of the long-distance 
continuum theory (universal), not cutoff artifacts (scheme-
dependent). All simple ways to count degrees of freedom in 
finite systems diverge in the continuum limit           : 
• Infinitely many microscopic d.o.f.   

Most of them are short-distance modes 
(depend on the cutoff, not universal).    

• To the extent possible, we would like to 
forget about them (powerful idea).

Degrees of  Freedom in QFT
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Renormalization Group (RG) Flows
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The RG organizes the dynamics of a QFT by energy scale    : 
• Restrict to energies below the UV cutoff:  
• RG flow = tracking the theory from the UV to the IR. We 

can think of this flow as taking place in the space         of all 
couplings of the theory      space of all theories (imprecise). 

• Along the flow, heavy d.o.f. decouple from the long-
distance physics (they are integrated out). 

If we can take             , we 
get a continuum theory at 
all distances; the RG flow 
explores arbitrarily high 
energies (UV complete).



Asymptotics of  the RG Flow
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Understand the limit             (also              ). We expect all 
mass scales to decouple there: emergent scale invariance.  
• In principle various scale-invariant asymptotics possible. 

Fixed points are the most familiar. What about the others?  
• Under favorable conditions, asymptotic scale invariance is 

further enhanced to the conformal group               . When 
does it happen? Does it imply new constraints on the flow?

Can also imagine 
more exotic scale-
invariant behavior 
(e.g. ergodic or 
turbulent) [Kogut, 
Wilson ’74]



• The qualitative picture of RG flow is rooted in the intuition 
that heavy d.o.f. decouple at long distances (irreversible). 

• To make this precise, need a way to count d.o.f. that is 
well-defined in continuum QFT. In free theories, we could 
count the number of fields, but this is generally ill defined.  

• Fruitful approach: look for a counting function (C-function): 
1S.) Dimensionless function of scale,          , which 
decreases monotonically from UV to IR,                  . 

1W.) Asymptotic values                such that                   .  
2.) In a unitary theory, we expect that                                .  

1S and 1W sometimes called weak and strong C-theorems. 

Counting Degrees of  Freedom in QFT

6



The C-Theorem in 2d
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In 2d [Zamolodchikov ’86] constructed a universal C-function:

• Uses Lorentz invariance,                  , reflection positivity. 
• Scale invariance implies                   , and unitarity             : 

CFT [Polchinski ’88]. If                   then              : TQFT. 
• Exactly marginal deformations don’t change the C-function. 
• Away from conformal fixed points                   , i.e. the 

C-function is strictly decreasing (rules out cyclic behavior).    
• Can express            as a height function            on theory 

space: gradient potential for RG flow [Z; Friedan, Konechny ’09]

(strong C-theorem)



A 2d CFT has Virasoro symmetry; central charge                . 
It shows up in many physical observables, not just                : 
• Finite-temperature free energy:                                                 
• Casimir energy, spectral asymptotics on      [Cardy ’86] 
• Trace anomaly: activating a background metric       leads to

The Many Faces of  C at Fixed Points

8

• Sphere partition function:   
• Vacuum entanglement:                           ,

[Holzhey, Larsen, Wilczek ’94; 
Calabrese, Cardy ’04]



As            all intervals coincide; 
nontrivial inequality at           :

The renormalized EE           [Liu, Mezei ’12] defines a universal 
C-function along RG flows [Casini, Huerta ’04]. Need unitarity, 
Lorentz invariance, some locality, e.g. deform Cauchy slice 
without changing    , strong subadditivity [Lieb, Ruskai ’73]:

C-Theorem from Entanglement 
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Or: use relative entropy [Casini, Teste, 
Torroba '16]. SSA also implies                . 



Note:      is analytic near, and 
stationary at fixed points;  
stationary, not analytic in the 
UV (             ),           has cusp:

The C-functions             (based on         ) and             (from 
entanglement) are different. Compare them for a free real 
scalar and Dirac fermion of mass       [Casini, Huerta + Fosco’05].

Possible (any   ) for sufficiently relevant 
perturbations [Klebanov, Nishioka, Pufu, Safdi ’12; 

Nishioka ’14; Lee, Lewkowycz, Perlmutter, Safdi ’14; …].

Free Field Examples
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[Casini, Huerta: cond-mat/0610375]



C-Functions in Higher Dimensions? 
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The 2d results suggest that C-functions are easy to find. This 
is not the case. Several natural candidates (well defined and 
positive, e.g. in the deep UV and IR), are not C-functions: 
•                                            increases in some SUSY RG 

flows, e.g. 4d SQCD [Anselmi, Freedman, Grisaru, Johansen ’97], 3d WZ 
models [Nishioka, Yonekura ’13]  (also [Cardy ’88; Cappelli, Friedan, Latorre ’91]). 

•                                  can increase, e.g. 4d SQCD [Appelquist, 

Cohen, Schmaltz ’99], 3d           models [Sachdev ’93 + Chubukov, Ye ’94]. 
Also,     can depend on exactly marginal couplings,  
e.g.                                                         [Gubser, Klebanov, Peet ’96].  

• In principle       can depend on exactly marginal couplings; 
no solid examples (                                           ) [Nakayama ’17].



Cardy’s Conjecture in Even Dimensions
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Trace anomaly in even    [Duff ’77; …; Deser, Schwimmer ’93; …]:  

  -anomaly unique, resides in                                                 ,

Generally multiple   -anomalies; none 
in          (              ,                          ).

[Cardy ’88] conjectured that                   (  -theorem). We also 
expect that          . Proofs in             ; SUSY results in          . 



[Myers, Sinha ’10] analyzed holographic RG flows in higher-
curvature gravity (more generic than Einstein gravity). They 
always found                  and conjectured a universal C-
theorem for renormalized EE [Liu, Mezei ’12]. In even   ,  
[Casini, Huerta, Myers ’11], so it reduces to Cardy’s   -conjecture. 

A Universal Conjecture
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Consider the CFT vacuum EE         across a sphere             : 

Expected divergences for a diff.-invariant regulator [Liu, Mezei ’12]

(proposal: mutual information [Casini, Huerta, Myers, Yale ’15]). 
Counterterms:                                     ,  in vacuum only odd   .   

area term [Bombelli, Koul, Lee, Sorkin ’86; Srednicki ’93; …]



In odd    [Casini, Huerta, Myers ’11] showed that           , the 
scheme-independent part of the partition function on          :

A Universal Conjecture (cont.)
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Independently [Jafferis+Klebanov, Pufu, Safdi ’11] conjectured that 
                  (   -theorem; proofs in          ). In all known 
examples,           ; expected to be true in general (no proof).  
• Uniform evidence for these conjectures in all dimensions:  

holography [Myers, Sinha ’10; Casini, Huerta, Myers ’11; …] and weakly 
relevant flows [Cardy ’88; Klebanov, Pufu, Safdi ’11; Giombi, Klebanov ’14]. 

• The conjectured C-functions                are invariant under 
exactly marginal deformations. Basic idea:                    .



Example: Conformal Window of  3d QED
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C-theorems constrain possible RG flows, and hence 
dynamics, e.g. they constrain phase diagrams (talk by [Seiberg]): 
• 3d QED:         gauge theory,        2-component fermions of 

charge      , flavor symmetry                                 . 
• For                 , inside the conformal window; for                 ,  

could break                                                                , 
leaving         NG bosons and the dual photon in the IR.  

• Can flow from the conformal window to the broken phase 
(e.g. add masses). The 3d F-theorem                           then 
constrains              [Giombi, Klebanov, Tarnopolsky ’15] (see [Grover ’12]). 

• Recent duality webs suggest that              [Seiberg, Senthil, 

Wang, Witten ’16; Hsin, Seiberg ’16], i.e. QED with              is a CFT.    



The a-Theorem in 4d
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• Early perturbative evidence [Cardy ’88; Osborn ’89, ’91 + Jack ’90].  
• Strong evidence from SUSY: formula for   -anomaly in 

terms of ’t Hooft anomalies [Anselmi, Freedman, Grisaru, Johansen ’97]: 
 
 
Computable, if the            symmetry is known; often 
determined by   -maximization [Intriligator, Wecht ’03; Kutasov, 

Parnachev, Sahakyan ’03]: many checks of                                   . 
• Can show that                    ,                  . Non-trivial:    first 

appears in             (no obvious positivity). Related to 
positive energy flux at infinity (ANEC) [Hofman, Maldacena ’08]; 
recent proofs: [Hofman et. al. ’16; Faulkner et. al. ’16; Hartman et. al. ’16]  



Proof  of  the 4d a-Theorem
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The general proof [Komargodski, Schwimmer ’11] (also [Komargodski ’11; 

Luty, Polchinski, Rattazzi ’12]) depends on several ingredients: 
• Imagine starting with a              with a moduli space of 

vacua: conformal symmetry is spontaneously broken. 
• In the deep IR, must find a nearly free, massless scalar NG 

boson: the dilaton    . It very weakly interacts with itself (via 
irrelevant operators), and perhaps other d.o.f. in a            .

• The   -anomaly must match between UV and IR: like ’t Hooft 
anomaly matching [Schwimmer, Theisen ’10]. The mismatch 
is compensated by a Wess-Zumino like term in the dilaton 
Lagrangian (typical of anomaly matching with NG bosons). 



Proof  of  the 4d a-Theorem (cont.)
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• Constrained by nonlinearly realized conformal symmetry 
acting on    . There is a systematic procedure to classify all 
terms. The     -term is the Wess-Zumino term, whose 
coefficient       is fixed by the anomaly mismatch. 

• Causality/unitarity force this coefficient to to be positive 
[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06], proving             .  

• 4-dilaton scattering probes                                with            . 
• Flows initiated by relevant couplings break conformal 

symmetry explicitly. Convert to spontaneous breaking by 
introducing    as a background field (spurion/compensator).       



Scale and Conformal Invariance
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In the previous 4d discussion, we assumed that the UV, IR 
asymptotics are given by CFTs. Is this always true? In 2d, 
scale invariance implied              (sufficient) [Polchinski ’88].

Dilaton S-matrix trivial, so         must vanish on shell. Thought 
to imply                  . No such results in other dimensions; free 
Maxwell theory is a counterexample [El-Showk, Nakayama, Rychkov ’11].

Not necessary in higher dimensions, due to improvements:

CFT requires                 . In 4d: check in perturbation theory 
[Osborn ’89, ’91 + Jack ’90,’13; Luty, Polchinski, Rattazzi ’12; Fortin, Grinstein, Stergiou ’12]. Beyond:

[Luty, Polchinski, Rattazzi ’12; 
Dymarsky, Komargodski, 
Schwimmer, Theisen ’13]



Recall:                                                           . In all known 
examples,           . No proof, but in TQFT                                  
is the topological EE of [Kitaev, Preskill ‘05; Levin, Wen ’05]: nonlocal, 
cannot be extracted from       correlators, e.g.                        .

The F-Theorem in 3d
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Strong evidence for                   from             SUSY RG flows 
with a            symmetry:     can be computed exactly using 
localization [Kapustin, Willett, Yaakov ’09; Jafferis ’10; Hama, Hosomichi, Lee ‘10] 
and    -maximization [Jafferis ’10; Jafferis, Klebanov, Pufu, Safdi ’11; Closset, TD, 
Festuccia, Komargodski, Seiberg ’12]. 

The    -theorem forces                       (flow from free Maxwell 
in the UV to          ). A closely related fact: it is not a CFT. 
The only known proofs use EE [Casini, Huerta ’12; Casini, Huerta, Myers, 
Yale ’15; Casini, Teste, Torroba ’17]  (gong show talk by [Teste]).



As              , the EE of all jagged circles reduce to that of a 
round circle (varying radius between       ). As           :

Renormalized EE:  
        is the bare EE across a circle. 
To get an inequality for        from 
SSA, consider     uniformly spaced 
circles      (radius        ) on null cone: 

The F-Theorem in 3d (cont.)

21

[Casini, Teste, Torroba: 
                 1704.01870]

Can generalize to prove 4d a-theorem: regulate singularities 
by applying SSA to                        (Markov property: [CTT ’17; Lashkari ’17]). 



Boundary RG Flows
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So far we have only considered RG flows of QFTs in infinite 
flat space. We can also consider the theory in finite volume, 
with suitable boundary conditions, e.g. take a 2d CFT on an 
interval of length    . Thermal partition function [Affleck, Ludwig ’91]

If the boundary is also conformal, then    is a constant. If we 
perturb the system by adding a relevant boundary operator 
(fixed bulk theory), then    evolves along the RG flow in such 
a way that                  [Affleck, Ludwig ’91; Friedan, Konechny ’03; Casini, 

Landea, Torroba ’16]. Recent generalizations to higher dimensions 
and co-dimensions, e.g. [Jensen, O’Bannon ’15] use dilaton 
effective actions to prove a boundary C-theorem in 3d. 



RG Flows in            Dimensions

23

We do not know of any interacting CFTs in           without 
SUSY (why?), but there is a rich zoo of interacting SCFTs in              
             . Their existence is inferred from string theory, no 
Lagrangian description (talk by [Kim]). Can we understand their 
RG flows? Do these flows obey any C-theorems? 

Status of the F-theorem in d = 5: 
•  [Jafferis, Pufu ’12] verified                    for some flows between 

SCFTs in the UV and IR (localization on     ).  
• No general proof, even for SUSY-preserving flows. 
• No argument that            at (S)CFT fixed points. 
•                          [Giombi, Klebanov, Tarnopolsky ’15] seems to ruin 

positivity away from fixed points (many SUSY examples).



The a-Theorem in Six Dimensions
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[Maxfield, Sethi ‘12; Elvang, Freedman, Hung, Kiermaier, Myers, Theisen ’12]  showed:

•          , but not in general related to      . The      Wess-
Zumino term is schematic (interactions of        dilatons). 

• No known constraint on low-energy actions gives             .  
Intuitively, this is because    dominates at low energies. 

• Focus on (1,0) SUSY RG flows starting from a UV SCFT: 
‣ no SUSY-preserving relevant operators [Louis, Lüst ’15; 

Cordova, TD, Intriligator ’15 + ’16] 

‣ instead, consider RG flows onto the moduli space of 
vacua, where the dilaton is a physical NG boson. 



The a-Theorem in Six Dimensions (cont.)
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• On tensor branches    resides in a tensor multiplet; SUSY 
constraints imply                      (  -theorem) [Cordova, TD, Intriligator ’15] 

• This relation was first noticed in maximally supersymmetric 
(2,0) theories [Maxfield, Sethi ‘12; Elvang et. al. ’12; Cordova, TD, Yin ’15]. 

• Turning on supergravity background fields shows that   , 
are related to Green-Schwarz terms for R-symmetry and 
gravitational ’t Hooft anomalies: formula for    in terms of 
anomalies (more   -theorem checks [Heckman, Rudelius ’15]).  

• No general proof that           in 6d, but one can show it for 
SUSY theories with tensor branches [Cordova, TD, Intriligator - in progress]



• Recall:                                 violates                   for some 
RG flows (not a general C-function). All counterexamples 
involve an interacting UV CFT; conjectured to hold if the 
UV theory is free [Appelquist, Cohen, Schmaltz ’99]. If true, it 
gives a tighter bound on the conformal window of 3d QED:  

• [Gukov '15 + ’16] has investigated global aspects of RG 
flows, e.g. using arguments from Morse theory he 
conjectured that if the RG flow is a gradient flow, then 
 

 
Counterexamples with dangerously irrelevant operators 
in           suggest obstructions to gradient flow. 

Two Interesting Proposals
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Instead of  Conclusions
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I expect that some entries will be filled in by Strings 2018!

2d 3d 4d 5d 6d
SUSY 

Checks
SUSY 
Proof

        SUSY 
Proof

gradient 
flow P.T.



Thank You for Your Attention!
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