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What are the possible spectra of local operators 
and structure constants?



Conformal Bootstrap



Conformal Bootstrap

crossing invariance
(associativity of OPE)



Conformal Bootstrap

modular invariancecrossing invariance
(associativity of OPE)



To illustrate with some examples…
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A few technical challenges

1. Conformal anomaly: choose a convenient conformal frame to 
make modular invariance manifest

2. Need efficient method of computing genus two conformal blocks

3. Need to handle semidefinite programming on functions of three 
internal weights

σ3 σ3

σ3 σ3

Plumbing frame:  
modular invariance not manifest

Renyi frame:  
modular invariance manifest

Recursion relations via analytic continuation in central charge.

(Not yet able to do this efficiently.)
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General Virasoro conformal blocks

In the plumbing frame, the large c limit is finite.

c=∞ vacuum block global SL(2) block

residues at poles are determined recursively

(captured by 1-loop partition function 
of 3D gravity on a handlebody) 
[Giombi-Maloney-XY ’08]

[Zamolodchikov ’84]
generalizations by [Hadasz, Jaskolski, Suchanek ’09] [Cho, Collier, XY ’17]
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General Virasoro conformal blocks

Necklace 
channel

OPE 
channel

Red: numerical result for genus one reflection 
amplitude in c=1 string theory from the worldsheet

Blue: matrix model result

Allows for efficient computation of arbitrary Virasoro conformal 
blocks.  

A recent application is the evaluation of torus 2-point function in 
Liouville CFT, and upon moduli integration, the genus one 2-point 
reflection amplitude in c=1 string theory [Balthazar-Rodriguez-XY ’17].
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To make modular invariance manifest, work in a different 
conformal frame. A convenience choice is the “Renyi frame”.

To begin with, consider the Z3 invariant Renyi surface (a genus two surface 
that is a 3-fold cover of the Riemann sphere branched at four points):

σ3 σ3

σ3 σ3

The Renyi surfaces occupy a 1 complex 
dimensional locus of the moduli space of 
genus two Riemann surfaces.

The parameter z is the cross ratio of the 
four branch points on the sphere.

Genus two Renyi surface
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σ3 σ3

σ3 σ3

σ3 σ3

σ3 σ3

A nontrivial generator of the genus two modular group Sp(4,Z) is 
the crossing transformation of the four-point function of Z3 twist 
fields.

We will focus on this crossing relation here.
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σ3 σ3

σ3 σ3

conformal anomaly plumbing frame block

The infinite c limit of the plumbing frame block for the Renyi surface is

(Finite c result can be recovered by recursion formula.)
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z

1 ∞

The 4-punctured sphere is conformally mapped to the pillow geometry 
(T2/Z2), with the identification of moduli

z-plane q-disc

[Maldacena-Simmons-Duffin-Zhiboedov ’15]

The q-expansion makes manifest 
certain analyticity and positivity 
properties of Virasoro conformal blocks.
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The coefficients An are non-negative.

etc.
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Genus two crossing equation 
beyond the Renyi surface

TTT

σ3 σ3

σ3 σ3

  

Triplet of Virasoro descendants of identity 
operator inserted on the three sheets

Modified genus two conformal blocks 
(with insertions of Virasoro 
descendants of id)
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If                                   takes negative value on some domain D and positive 
value on the interior of the complement of D, then the structure 
constants outside of D are bounded by those within D.
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Constraints on structure constants 
from genus two crossing equation

Delicate shape of the critical domain where one of the weights is close to 
zero:

The genus two modular crossing equation knows about associativity of OPE, 
and in particular, constraints from operator algebra of approximately 
conserved currents (small twist operators).
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zero:
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In analyzing the critical domains so far, we only expanded the crossing 
equation to first order around z=1/2 along the Renyi locus. Full implications 
of the crossing equation remain to be uncovered.

The genus two modular crossing equation knows about associativity of OPE, 
and in particular, constraints from operator algebra of approximately 
conserved currents (small twist operators).
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1. Are there compact unitary 2D CFTs with nonzero twist gap (in Virasoro 
primaries)? Is (c-1)/12 the optimal upper bound on the twist gap? 

2. What values of central charge c>1 can be realized by compact unitary 
CFTs? (Put differently, can a unitary Virasoro algebra always be 
embedded in a compact modular invariant theory?) 

3. Are there really compact CFTs of large c and large gap in the spectrum 
of Virasoro primaries? 

4. To what extent does the low lying operator spectrum of a CFT pin down 
the entire theory? (Existence and uniqueness of UV completion of 
gravity+matter in AdS?)
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