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large N confining gauge theories, …

[Veneziano]
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Universal/Imaginary Angles (analytic methods)

Non-universal/Real Angles (numerical methods)

WIHS amplitudes are universal at imaginary scattering angles 

s, t > 0

s > 0, � s < t < 0
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The high energy limit of WIHS amplitudes at imaginary  
scattering angles takes the form

elliptic integral of the first kind 
EllipticK[x]

limit of the Veneziano amplitude 
(Zohar’s talk at Strings2016)
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correction due to the slowdown of the string 
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• amplitude is exponentially large (unitarity      universality))

• insensitive to the microscopic spectrum degeneracy
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• Scattering of Strings With Massive Endpoints

• Universality (Holography & EFT of Long Strings)

• Bootstrap
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s/t fixed
|s|, |t| ! 1
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• real scattering angles (amplitude is small) SE � 1

• imaginary scattering angles (amplitude is large) �SE � 1
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Asymptotic s-u Crossing

Equivalently, the asymptotic s-u crossing is:

dDiscs logA(s, t) ⌘

logA(�s� t+ i✏, t) + logA(�s� t� i✏, t)� 2 logA(s, t) = 0

Double discontinuity is zero!
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Why is the correction universal?

Why is the massive ends model physical?



Holographic Argument

Holographic dual of a confining gauge theory: 

ds
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2 + f(r) dx2
1,d�1

• AdS in the UV lim
r!1

f(r) = e2r

• Cutoff in the IR f(0) = 1

[Sonnenschein]
[Erdmenger et al.]
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At high energies the string acquires the characteristic shape

IR

r0

Holographic 
radial direction Flavor brane

UV

m ) m m

effective description

m2↵0 � 1

string in flat space

• At             the holographic model reduces to the string with massive ends s, t � 1

• Insensitive to the details of the background

Polchinski-Strassler Mechanism
[Polchinski, Strassler]
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Bootstrap (Leading Order)

For s,t large and positive a thermodynamic picture emerges

s, t ! 1
s/t fixed

lim logA ((1 + i✏)s, (1 + i✏)t) [Caron-Huot, Komargodski, Sever, AZ]

1�1

J even

J odd

PJ(x)

we are here 

Partial wave

) • At least one zero between every two poles 
• There could be more zeros

) • All residues are positive

Complex s plane 
at fixed real t



poles

zeros

Bootstrap (Leading Order)

For s,t large and positive a thermodynamic picture emerges

�t

s

We are here

s, t ! 1
s/t fixed

lim logA ((1 + i✏)s, (1 + i✏)t)

distribution of excess zeros ⇢

logA(s, t) ' j(t) log s ) j(t) = Diss logA =

X
(zeros� poles)



Bootstrap (Leading Order)

To leading order we have

logA(s, t) ' log

j(t)Z

0

dj cj(t) Pj

✓
1 +

2s

t

◆
, cj(t) � 0

The unique solution is

�t

s

logA(s, t) = ↵

0
t

1Z

0

dx⇢(x) log

⇣
1 +

s

tx

⌘

= ↵0
[(s+ t) log(s+ t)� s log s� t log t]
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Bootstrap (Correction)

• Spectrum Non-degeneracy/Support of excess zeros

�t

s

non-degeneracy 
zeros

Indeed, the massive ends correction is of this form!

density>0
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• Unitarity and the s-t crossing are not enough

logA(s, t) = logA(t, s)

Bootstrap (Correction)

• Impose the s-u crossing

dDiscs logA(s, t) = 0

s

t

u



Bootstrap (Integral Equation)

The extra condition leads to an integral equation

�⇢k(y) =

1Z

0

dx [K(y, x) +K(1� y, 1� x)] �⇢k(x)

+

(1� y)

k�1

⇡ sin⇡k

✓
y

x+ y � x y

+ k log

x (1� y)

x+ y � x y

◆

�j(t) = tk

correction to the trajectory

correction to the distribution

K(y, x) =

cot⇡k

⇡

✓
yP

1

x� y

� k log

x

|x� y|

◆



• The correction we found obeys the equation
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• The correction we found obeys the equation
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• The correction we found obeys the equation

• Easy to show that only k=1/4, k=3/4 are possible

The solution is unique? (in progress)

�⇢k(y) =

1Z

0

dx [K(y, x) +K(1� y, 1� x)] �⇢k(x)

Bootstrap (Integral Equation)

�j(t) = tk
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Conclusions and Open questions

• WIHS is an exciting, unexplored and stringy territory
[Hagedorn?]

• Non-universal regime
[Numerical bootstrap, graviton, DIS?]

• Bootstrap in AdS (Mellin space)
[Theories with accumulation?]

thank you!

• Subject to the analytic bootstrap 
[Systematic expansion, EFT+holography?]

[talk Alday]

• Quantum theories 
[Universal?]

[talk Penedones]
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Bootstrap Method

1. Solve analytically for things that ``must happen.’’

3. Feed this knowledge into 1.

Take your physical problem and:

2. Feed this knowledge into a computer.  
Learn things that ``never happen’’  
and ``special occasions.’’

Clearly, the final result is independent of the starting point. 
[Simmons-Duffin]



Bootstrap in Mellin space

Mack polynomials at large spin take the form

M(s, t) '
c2��⌧Q

�,⌧,d
J,m (s)

t� (⌧ + 2m)
+ ...

Crossing equation takes the form

M(s, t) '
J(t)X

cJJ
s =

J(s)X
cJJ

t ' M(t, s)

The solution is
logM(s, t) =

1

c
s t

⌧(J) = c log J
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• introduce the boundary metric e(�)2 =
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• impose the Virasoro constraint
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Consider the small m expansion
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The leading solution is


