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Qualitative disagreement between AdS
gravitational field theory/perturbative string theory 

and exact, unitary Conformal Field Theory.

What Paradoxes?

Two classes:

Easier = unambiguous discrepancies with CFT

Hard = potentially ambiguous questions
about AdS observables



Bulk field theory produces  
boundary correlators with
“bulk point singularities” 
associated with scattering.

These singularities expected 
to be absent from exact CFTs.

Figure 1: Four-point correlator with wavepackets aligned to intersect in the bulk.

the arguments are (−π/2, ê), (−π/2,−ê), (+π/2, ê′), (+π/2,−ê′), and in all conformally

equivalent configurations.

This singularity is not present in general CFT’s, for example not in the weakly coupled

N = 4 theory (there is a weaker singularity at the same point). Rather, it emerges in the

strong-coupling limit. In Sec. 6 we will describe the singularity in more detail, and compare

it with what we find in the CFT. For now, the main lesson is that to study the bulk locality

properties we should look at the CFT four-point function. Note that the forms of the two-

and three-point functions are fully determined by conformal symmetry, but that of the four-

point function is not. In fact, in all dimensions it is determined by symmetry up to a function

of two real cross ratios. This function carries dynamical information, in particular regarding

the locality of the bulk theory.

2.3 Current understanding

AdS/CFT duality has been subjected to many tests. Indeed, every time we apply it in a

new way we have the possibility that it will lead to implausible or incorrect results, signaling

a failure of the duality. The tests are of many types, for example
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Unambiguous Disagreement: 
Bulk Point Singularities

(Won’t be our focus, but note that not all 
“easy” problems involve black holes.)



Unambiguous Disagreement: 
Late Time Correlations

Late time behavior of 
correlation functions 
in an AdS black hole 

background.

Does                              decay 
forever?

Is the spectrum discrete?

OH(1)

OH(�1)

OL(t)

OL(0)

hOL(t)OL(0)iBH



Forbidden Singularities due to Euclidean-time 
periodicity (KMS) in pure state black holes:

How well do high-energy pure states 
mimic the canonical ensemble?

10

z

zsing = 1� en�
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Unambiguous Disagreement: 
Forbidden Singularities

OH(�1)

OH(1)

OL(0)

OL(t)

z = 1� e�t



“Hard” = Ambiguous (?)  
Problems

I. How ambiguous is bulk reconstruction?  
When/where/why/to what extent?

II. What do observers see near and across 
black hole horizons?

?!



Our Approach
1)  Identify the approximation within the CFT that 

agrees with the perturbative bulk description and 
produces (information loss) problems.

2) From the vantage point of this approximation, 
identify and compute the non-perturbative effects 

that resolve information loss problems.

3) Comparing 1 & 2, what are the bulk implications?

In the approximation of (1), expect no ambiguities or 
firewalls.  Both should come from effects in (2).



Old News  
about  

Heavy-Light  
Virasoro Blocks



What Observable  
(in AdS/CFT)?

OH(�1)

OH(1)

OL(0)

OL(t)

hOH(1)OH(1)OL(z)OL(0)i

Recall:

We’ll study light probes
of heavy pure states.

Always expand in the                          OPE channel.OL(z)OL(0)

GN =
3

2c
, mAdS ⇠ h



Building Blocks for Correlators

Natural to organize amplitudes into blocks, 
ie irreducible representations of the symmetry. 

In d>2 CFT, we have SO(d+1,1) conformal blocks
or conformal partial waves.

Flat space with Poincare symmetry, find partial waves.



Virasoro conformal blocks encapsulate
contributions from all states related by Virasoro:

Although we are focusing on the vacuum conformal block, general blocks also have their

own singularities as can be seen directly in equation (2.13) when 0 < h < 2hL. We expect that

these singularities must also be resolved within the structure of these more general Virasoro

blocks. We are not focusing on them because they are more complicated and less universal,

but they certainly warrant further study.

In summary, the vacuum conformal block, a function determined purely by Virasoro

symmetry, exactly matches AdS3 computations involving deficit angles and BTZ black holes

[]. In the large c limit it has forbidden singularities that are indicative of unitarity violation

and information loss; the large c result is analytic in r+, interpolating between the defifict

and black hole cases. At finite c the forbidden singularities must be resolved within the

structure of V0(z) itself. Thus we can study universal aspects of information loss in black

hole backgrounds by examining the analytic structure of V0(z) as a simultaneous function of

c and z. This will be our focus for the remainder of this work.

3 Exact Virasoro Blocks at Large Central Charge

In this section we will discuss a well-known infinite class of examples where exact information

can be obtained concerning heavy-light vacuum Virasoro blocks. First we will very briefly

review that status of Virasoro blocks and then degerate operators, in section 3.1. Then in

section 3.2 we will explain how the exact correlators that we can obtain analytically continue

to precisely reproduce our previous results at large c. Finally, in section 3.3 we will discuss

how the exact blocks resolve the forbidden singlarities at finite c, emphasizing that from the

point of view of 1/c perturbation theory, the resolution is non-perturbative.

3.1 Brief Review of Virasoro Blocks and Degenerate States

Any CFT2 correlator can be written as a sum over Virasoro conformal blocks

hO1(1)O2(1)O3(z)O4(0)i =
X

h,h̄

Ph,h̄Vhi,h,c(z)Vh̄i,h̄,c
(z̄) (3.1)

where we have chosen the 12 ! 34 channel derived from the OPE expansion of O3(z)O4(0).

The blocks, aka partial waves, encapsulate the contribution of an entire irreducible represen-

tation of the Virasoro algebra to the correlator.

The holomorphic part of the blocks Vhi,h,c(z) depends on the four external operator di-

mensions, the internal primary operator dimension h, the central charge c, and the kinematical

variable z in the plane. Ideally we would like to have an explicit, closed-form expression for

the general Virasoro conformal blocks. Such a formula would allow us to observe how the

forbidden singularities discussed in section 2.2 are resolved by non-perturbative e↵ects ⇠ e�c

in the large c expansion.

This is probably too much to hope for. Current tools provide recursion relations [] that

e�ciently compute the series expansion of the blocks inear z = 0 with generic hi, hint, c; closed

form results in the limit hint ! 1 []; and closed form results as c ! 1 in the heavy-light
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This is interesting because: gµ⌫(X) $ Tµ⌫(x)

T (z) =
X

n

z�2�nLnand in 2d CFTs:

Virasoro blocks know about quantum gravity.

Building Blocks  
for 2d CFT Correlators



Some Blocks Are  
More Interesting Than Others

Most of the structure is 
present in each layer…
but you have to know 

how to look.
(Ozmenoglu)

Let’s first study the heavy-light semiclassical approx:

c ! 1 with

hH

c
, hL fixed



Example: Heavy-Light Vacuum 
Block as             .  

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

Semiclassical heavy-light Virasoro vacuum block:

TH =
1

2⇡

r
24

hH

c
� 1

on the Euclidean cylinder, with

c ! 1

OH(�1)

OH(1)

OL(0)

OL(t)

It knows the BTZ black hole temperature!

Let’s note two features of this semiclassical result…



Late Time Information Loss  
from Virasoro Blocks

It decays exponentially at late Lorentzian times.

expect to be able to understand the behavior of the correlator in the large Lorentzian time

regime without knowing all CFT data (the spectrum and the OPE coe�cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH / c ! 1, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI
(z) /

✓
1 � w

1 � z

◆hL

whI�2hL
2F1(hI , hI , 2hI , w), w ⌘ 1 � (1 � z)ir+ (2.13)

with r+ = 2⇡TH =
q

24hH
c � 1, and hH > c

24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1 � e�itL , in which case since ↵ is imaginary,

we have w = 1 � e2⇡TH tL . Furthermore, at large tL we have

2F1
�
hI , hI , 2hI , 1 � e2⇡TH tL

� / e�2⇡hITH tL (2.14)

so that overall, every block is proportional to e�2⇡hLTH tL as tL ! 1, regardless of the value

of hI ⌧ c. Notice that we have the same behavior as tL ! �1, as we should expect since the

two light operators OL in the correlator are identical. Thus all of the heavy-light, large central

charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian times. Since

we expect the sum over blocks to be convergent in CFT2 [14], this implies that correlators

constructed from such a sum must also vanish exponentially at large tL. Since we do not have

explicit expressions for the Virasoro blocks when hI / c, a loophole remains, as it is possible

that heavy-light blocks with heavy intermediate states do not vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times of

order SBH = ⇡2

3 cTH , the black hole entropy.

3 Exact Virasoro Blocks at Large Central Charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where exact

information can be obtained. First we will very briefly review degerate operators in section

3.1. We provide an illustrative example of the general story in section 3.1.2. Then in section

3.2 we explain how the correlators of degenerate operators can be analytically continued to

precisely reproduce all of our previous large c results. In section 3.3 we will discuss the non-

perturbative resolution of the forbidden singlarities at finite c. Motivated by these successes,

in section 3.4 we discuss the late Lorentzian time behavior of the vacuum block.
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All semiclassical blocks 
decay at the same 
exponential rate:
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Figure 2. This figure shows the time-dependence of leading semiclassical saddles contributing to
1
c log V, with di↵erent ↵I = 1, 3/5, i/2, 5i/4 (black, solid; gray, dot-dashed; red, dashed; and blue,
dotted, respectively) and fixed ↵L = 0.99 and TH = 2⇡. The solid black line corresopnds to ↵I = 1,
which is the vacuum Virasoro block. For ease of comparison we have made an overall constant shift in
each f to emphasize that the late-time exponential decay is completely independent of the intermediate
operator dimension. See fig. 13 for more details.

of this result is that the information loss problem must persist after including semiclassical

conformal blocks for heavy states with hI ⇠ O(c).

1.4 Summary of Results

Writing semiclassical contributions to the Virasoro blocks as e�
c
6f(⌘i,⌘I ,z) with z ⌘ 1 � e�it,

we find two discrete infinite classes of  = z(1 � z)@zf in the limit t ! ±1. All of the

sub-leading saddles may be interpreted as ‘additional angles’ in AdS
3

, as depicted in figure 4.

We define ↵X ⌘
q

1 � 24hX
c ; we will take ↵L to be real and ↵H = 2⇡iTH to be purely

imaginary, as this is the case of interest for correlators probing BTZ black holes. The first

infinite class are the decaying saddles, with asymptotic  of the form


dec

(n) = n(1 � n) � 1

2
+

✓
1

2
� n

◆
(↵L ± ↵H) ⌥ ↵L↵H

2
, (1.8)

where n must be an integer, as discussed near equation (2.43). The leading semiclassical

contribution to the Virasoro blocks is the case n = 0. For all values of n, the ± signs are

always dynamically chosen (by following the solutions from early to late times) so that

V(t)
|t|!1⇠ ei✓(t) exp

h
�⇡

6

⇣
|2n � 1| ± ↵L

⌘
cTH |t|

i
(1.9)

decyas as |t| ! 1 for real ↵L and real TH .
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tL

log |V|

V(tL) =
✓

⇡TH

sinh(⇡THtL)

◆2hL



Forbidden Singularities 
from Virasoro Blocks

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

It is periodic in Euclidean time, ie satisfies KMS.

10

z
This means that it has

forbidden singularities:

zsing = 1� en�

representing Unitarity violation



Virasoro Blocks Encapsulate 
Quantum Gravity and Info Loss

• Black Hole Thermodynamics from Blocks
• Information loss comes from the blocks, and 

occurs block-by-block, largely independent of 
CFT data (ie spectrum and OPE coefficients)

And we do not have to solve any particular theory.

So gravity is very robust/generic!



Resolving Information 
Loss Problems 

and 
Implications for the Bulk



Exact Information about  
Virasoro Blocks and Gravity?

It is possible to get exact information using
analytic continuation of degenerate states.

A simpler approach is to just evaluate the blocks
numerically to very high precision using
the Zamolodchikov recursion relations.

Let’s look at the results…



l
o
g
|V
|

At late times the gravity prediction breaks down:

q-expansion, as one might hope to derive this asymptotic behavior for the coe�cients

using the Zamolodchikov recursion relations. One might also compute �2

h(E) directly

using the crossing relation [45, 46]. Finally we discuss the implication of our results for

the late time behavior of the correlator.

0 10 20 30 40 50

-20

-15

-10

-5

0

= =
30

=
12

=

Figure 8. Heavy-light Virasoro vacuum blocks switch from an initial exponential decay to

a slow, universal power law decay at roughly the time scale td = tD � b, where the constant

o↵set b depends on the choice of r in z = 1 � re�it. The vertical axis is log |V|, while the

horizontal axis is the Lorentzian time t. The black lines are full Virasoro vacuum blocks

computed to order q1200. This polynomial truncation stops converging in the shaded region.

The yellow dashed lines are the semiclassical vacuum blocks using methods of [5]. The red

dashed lines are the time scale (3.3). The blue dashed lines are the power law at�
3

2 with a

properly chosen to match the full blocks.

3.1 Numerical Results and Empirical Findings

3.1.1 Vacuum Virasoro Blocks

Using the methods discussed in section 2, we compute the vacuum Virasoro blocks at

late times. Figure 8 shows the result along with a comparison to the semiclassical blocks

computed using semi-analytic methods [5]. For numerical convenience we avoid certain

rational values of c to prevent singularities in intermediate steps of the computation.
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Exact vs Semiclassical: 
Late Time Behavior

time

Early:

expect to be able to understand the behavior of the correlator in the large Lorentzian time

regime without knowing all CFT data (the spectrum and the OPE coe�cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH / c ! 1, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI
(z) /

✓
1 � w

1 � z

◆hL

whI�2hL
2F1(hI , hI , 2hI , w), w ⌘ 1 � (1 � z)ir+ (2.13)

with r+ = 2⇡TH =
q

24hH
c � 1, and hH > c

24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1 � e�itL , in which case since ↵ is imaginary,

we have w = 1 � e2⇡TH tL . Furthermore, at large tL we have

2F1
�
hI , hI , 2hI , 1 � e2⇡TH tL

� / e�2⇡hITH tL (2.14)

so that overall, every block is proportional to e�2⇡hLTH tL as tL ! 1, regardless of the value

of hI ⌧ c. Notice that we have the same behavior as tL ! �1, as we should expect since the

two light operators OL in the correlator are identical. Thus all of the heavy-light, large central

charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian times. Since

we expect the sum over blocks to be convergent in CFT2 [14], this implies that correlators

constructed from such a sum must also vanish exponentially at large tL. Since we do not have

explicit expressions for the Virasoro blocks when hI / c, a loophole remains, as it is possible

that heavy-light blocks with heavy intermediate states do not vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times of

order SBH = ⇡2

3 cTH , the black hole entropy.

3 Exact Virasoro Blocks at Large Central Charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where exact

information can be obtained. First we will very briefly review degerate operators in section

3.1. We provide an illustrative example of the general story in section 3.1.2. Then in section

3.2 we explain how the correlators of degenerate operators can be analytically continued to

precisely reproduce all of our previous large c results. In section 3.3 we will discuss the non-

perturbative resolution of the forbidden singlarities at finite c. Motivated by these successes,

in section 3.4 we discuss the late Lorentzian time behavior of the vacuum block.
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Late:

Transition at                predicted analytically.

average absolute value at late times. If such features are present in Vh(t), then it is

natural to investigate the timescale where Vh(t) transitions from exponential decay to

some other late-time behavior.

The full CFT
2

correlator should not become much smaller than ⇠ e�S. Since

Virasoro blocks associated with light operators initially decay exponentially, one might

naively expect that Vh(t) should change qualitatively after a time of order S. More

specifically, for heavy-light correlators dominated by the vacuum block, we would expect

a departure from exponential decay by a time

tD =
⇡c

6hL

(3.3)

up to an unknown order one factor. This argument is rather weak, since the full

correlator might not behave like the light-operator Virasoro blocks. However, the same

prediction for tD was derived from an analysis of non-perturbative e↵ects [7] in the

vacuum block. We discuss the equation that led to that prediction in section 4.3.

We will see empirically that Virasoro blocks with small h do undergo a transition

at a timescale remarkably close to tD. Furthermore, at late times the behavior of the

heavy-light Virasoro blocks appears to be a universal power-law:

|VhL,hH ,h,c (t � tD) | / t�
3

2 , (3.4)

where we require hH � 1

24

, so that at least one external operator is heavy enough to

create a blackhole. When the intermediate dimension h & hH the late time power-

law behavior remains the same, although the transition time then also depends on h

(and we do not have an analytic prediction to compare to). This universal behavior

suggests a threshold
p
E � E⇤ in �2

h(E), which seems to correspond with random matrix

behavior [41, 44]. Our results indicate that the t�
3

2 power-law persists to timescales

⇠ eS, so individual heavy-light Virasoro blocks are not sensitive to the discreteness of

the spectrum.

These results show that the time-dependence of the heavy-light Virasoro blocks

has some qualitative similarities with that of the Virasoro vacuum character after an

S transformation and the analytic continuation � ! � + it [42]. Both the heavy-light

blocks with small h and the vacuum character have an initial exponential-type decay,

though the precise time-dependence is rather di↵erent. The heavy-light blocks and the

vacuum character have the same power-law decay at late times, though non-vacuum

characters decay with a di↵erent late-time power-law [42].

In what follows we will study the heavy-light blocks Vh(t) empirically to establish

the robust features of their time-dependence. We also translate the late-time t�3/2

behavior into a statement about the coe�cients of qN in Vh(q) at large orders in the

– 17 –

t�3/2
L



Late Time Punchlines
• Non-perturbative corrections are universal and 

qualitatively change late-time behavior of blocks
• Behavior of individual Virasoro blocks 

ameliorates but does not resolve late time decay

Late time behavior tests discreteness of spectrum…

Individual Virasoro blocks do not “know” that the 
spectrum must be discrete in all channels.
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Figure 15. In this plot, we compare the exact and semiclassical blocks. One can see that at

the positions of the semiclassical forbidden singularities, the exact blocks are smooth. Fixing

hL and hH
c as we increase c, the exact blocks approach the semiclassical block in the region

between the origin and the first forbidden singularity. However, beyond the first forbidden

singularity the exact blocks deviate greatly as we increase c. This indicates that we have

passed a Stokes line (emanating from the forbidden singularity) and some other semiclassical

saddle dominates the exact blocks in the large c limit. The gray line is the position of t = i�
2

.

We compare the exact and semiclassical blocks at finite time in figure 16. We see

that the semiclassical blocks remain a good approximation to correlators of O(t + i�
2

)

as long as we avoid the long-time region of t / S that was discussed in section 3. In

particular, there is not a significant di↵erence between the quality of the semiclassical

approximation to correlators of O(t + i�
2

) and O(t). The most naive interpretation of

this fact is that non-perturbative quantum gravitational e↵ects do not obstruct local

physics across the horizon of pure, energy-eigenstate black holes. A qualitatively similar

conclusion was reached for late-time deviations [53] from the semiclassical limit. This

result was also anticipated by the analytic analysis of [7], which only suggested large

non-perturbative corrections within 1p
c
of the forbidden singularites. In the next section

we will discuss that analysis and compare it with our numerical results.

4.3 Fate of the Semiclassical Approximation from Analytics and Numerics

We do not have to rely entirely on numerics to explore the regime of validity of the

semiclassical limit. It has been shown that the vacuum block’s forbidden singularities

have a universal resolution due to non-perturbative e↵ects in central charge. Specifi-

cally, the heavy-light vacuum block (with hL and hH

c
held fixed at large c) should obey
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Euclidean-Time Periodicity  
and Forbidden Singularities

Semiclassical and exact blocks on the real axis:

Semiclassical approximation breaks down completely
beyond               due to Stokes phenomena. t ⇡ 1

TH



Figure 16. In this figure we compare the semiclassical and exact blocks associated with

O(t) and O(t + i�
2

). The plot suggests that the semiclassical approximation remains valid for

correlators of O(t + i�
2

). We implement time dependence via z = 1 � re�it and so a shift by
i�
2

simply corresponds to a di↵erent choice of r. Corresponding trajectories in the unit q disk

are pictured in figure 6. Apparently the semiclassical approximation works well at t + i�
2

.

Contours of

����⌃H
V ��

V �

���� in ⇢ Unit Disk Contours of
|Vexact � Vsemi|
|Vexact| + |Vsemi| in ⇢

Figure 17. The figure on the left shows a contour plot of the function |⌃H
V 00

V 0 | from equation

(4.2) in the ⇢ unit disk with hL = 1 and hH = c
4

. The figure on the right is the deviation of

the exact and semiclassical Virasoro vacuum blocks with the same parameters and c = 60.

The positions of the forbidden singularities are indicated with black dots. The plot on the

left can be viewed as a kind of analytic prediction for the deviation plotted on the right.
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Contours of

����⌃H
V ��

V �

���� in ⇢ Unit Disk Contours of
|Vexact � Vsemi|
|Vexact| + |Vsemi| in ⇢

Figure 18. The figure on the left shows a contour plot of the function |⌃H
V 00

V 0 | from equation

(4.2) in the ⇢ unit disk with hL = 1 and hH = c
30

. In this case hH < c
24

, so the heavy-

light block does not include a black hole – instead it corresponds to a light probe interacting

with a deficit angle in AdS
3

. Thus there are no forbidden singularities, and the semiclasssical

approximation is reliable in a much larger region as compared to figure 17 (note the di↵erence

in scales). The figure on the right is the deviation of the exact and semiclassical Virasoro

vacuum blocks with the same parameters and c = 60. The plot on the left can be viewed as

a kind of analytic prediction for the deviation plotted on the right.

heavy background state does not correspond to a black hole, the original semiclassical

approximation remains good throughout the Euclidean region. We demonstrate this

explicitly in figure 18. So the breakdown of the semiclassical limit exhibited in figure

17 really does depend on the presence of a black hole, and is not a general feature of

all Virasoro blocks at large central charge.

5 Discussion

We would eventually like to resolve the black hole information paradox by doing the

right calculation. In the context of AdS/CFT, this means discerning under what cir-

cumstances, if any, bulk reconstruction is possible near and behind black hole horizons.

If firewalls [52] are completely generic, or if bulk reconstruction is su�ciently am-

biguous, then this could be a fools errand. But even in this case, one can still hope

for a more constructive argument rather than various reductio ad absurdums [34]. For

example, one would like to reconstruct the ‘experience’ of a collapsing spherical shell,

and explicitly compute the timescale beyond which subsequent infallers will not see a

smooth (or well-defined) geometry.
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Without a Black Hole With a Black Hole

Semiclassical Approximation 
in the Euclidean Region

⇢ =
z

(z +
p
1� z)2

Contour plots in 



Bulk Interpretation?
The Euclidean scalar BTZ metric is

ds2 = (r2 � r2+)dt
2 +

dr2

r2 � r2+
+ r2d✓2

This corresponds to the “cigar geometry”

t!

r = 1

r+

where periodicity in Euclidean time ensures
the absence of a conical singularity at the horizon.



Euclidean Drama?
The cigar makes sense in the canonical ensemble

where correlators truly are periodic in Euclidean time.

But what geometric interpretation 
should we attach to pure state black holes?

r = 1

r+ OL(t)

OL(0)



Euclidean Drama
Exact correlators in a pure state background
may not be periodic… even approximately.

To place them on the cigar, we need a branch cut:

The correlators on the boundary can still be smooth, 
but they cannot be continued to the horizon!

r = 1

OL(t)

OL(0)?



Future Directions (in Progress)

1) How UV sensitive and theory-dependent is 
“Euclidean drama” near the horizon?

2) Does it infect Lorentzian observables?  

3) Can we explicitly identify/quantify ambiguities?

Currently developing Virasoro-based tools for bulk 
reconstruction in order to probe the horizon.



Summary

I.  Information loss in                          arises from the 
semiclassical expansion of Virasoro blocks       

II. Many well-defined information loss problems are 
ameliorated or resolved by computable non-
perturbative effects within Virasoro blocks

III. These non-perturbative effects have implications 
for bulk physics near the horizon!

AdS3/CFT2



Thank You!



Extra Slides



Figure 6. The function q(r, t) for di↵erent r, where we have written z = 1�re�it and plotted

the lines t 2 [0, 1). For the blue curve we chose � = 2⇡, which corresponds with hH = c
12

.

Note that the wiggles are due to the fact that when t = 2⇡n and r ⇡ 1, the coordinate z

approaches an OPE singularity. The large time limit of q was given in equation (2.7).

operator dimensions hH / c, and the two ‘light’ dimensions hL and the intermediate

operator dimension h fixed, the blocks take the form [2]

V = (1 � w)
hL

↵H�1

↵H

✓
w

↵H

◆h�2hL

2

F
1

(h, h, 2h, w) (2.10)

where w ⌘ 1 � (1 � z)↵H and ↵H ⌘
q
1 � 24hH

c
. Note that when hH > c

24

, we have

↵H = 2⇡iTH where TH is the Hawking temperature of a corresponding BTZ black hole.

In the case of the vacuum block, which is h = 0, the 1/c corrections to this limit are

also known explicitly [4] for any hH/c. Finally, in the semiclassical large c limit, where

all dimensions hi, h / c, there is overwhelming evidence that the blocks take the form

V = e�
c
6

f(hi
c
,h
c
,z) (2.11)

as though they are derived from a semiclassical path integral (and in fact they have an

sl(2) Chern-Simons path integral representation [14]). The semiclassical saddle points

have been classified [5], and in some kinematic limits we can determine the behavior of f

analytically. In particular, the large Lorentzian time behavior of f with the kinematics

of figure 1 and hL < c
24

< hH has been determined [5]. The result is that the leading
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Time Dependence of q
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Late-time           holds for non-vacuum blocks:
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Figure 10. The late time behavior of various non-vacuum Virasoro blocks. The vertical

axis is log |V| and the horizontal axis is the time t. The black lines are full Virasoro blocks

computed to order q1200, plotted using z = 1�re�it with r = 0.3. The polynomial truncation

no longer converges in the shaded region. The blue dashed lines are the power law a t�
3

2 with

the constant a fitted to the blocks. We refer to the time and height of the maxima as t
max

and |V|
max

= 16h�
c�1

24 |Ṽ|
max

.

From the data plotted in figure 11, we see that beyond the blackhole threshold

h > c
24

, the timescale t
max

has a simple dependence on parameters. We can fit it to the

ansatz

t
max

= At|↵h| + b
time

(3.5)

with ↵h =
q
1 � 24h

c
and obtain At and b

time

empirically. The parameter At is almost

a linear function of c
hH

, as can be seen in figure 12, with virtually no dependence on

other parameters such as hL. It approaches At ⇡ c
2hH

+ constant when hH & c
2

. For

smaller values of hH we find 1

2

� dAt

d(c/hH)

� 1

5

. We cover a larger range of hH in figure

22 in the appendix, which displays the variation in At.

On the left of figure 11 we plot |Ṽ
max

|, which is the maximum of the absolute value

of the block after extracting a universal prefactor via |V
max

| = 16h�
c�1

24 |Ṽ
max

|. We see

that |Ṽ
max

| also has a simple dependence on h
c
. We can perform a similar fit for |Ṽ

max

|,

– 20 –
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We can even go to       time:
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Figure 13. These plots show a variety of parameter choices where the behavior of Virasoro

blocks on the timescale eS (green vertical line), and even ee
S

(blue vertical line), are visible.

Yellow lines indicate semiclassical behavior, while the light blue fit corresponds to t�
3

2 . Recall

S = ⇡2

3

cTH with 2⇡TH =
q

24hH
c � 1, so some plots have relatively large c and small TH ,

while others have order one TH but small c. In all cases we see that the t�
3

2 late-time decay

persists on these exponentially long timescales. These plots all display vacuum blocks, but

we have found similar behavior with h > 0.

This means:

H(t) =
1X

n=0

cnq(t)
2n ⇠ t4((hH+hL)� c

16

� 5

16

) (3.7)

A power law in the late time behavior of the H can be directly related to the large

order behavior of the q-expansion coe�cients cn. We find that cn ⇠ ns with

s = 4

✓
hH + hL � c

16
� 9

16

◆
(3.8)

where s is the dominant power of the coe�cient growth, and we are assuming that

H(t) does grow at large t, which roughly requires hH > c
16

. Examples of this behavior

are shown in figure 14. If H(t) decays at late times, then there must be cancellations

in the sum over qn, and we cannot predict such a simple power-law.
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