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What is the basic mechanism of AdS/CFT?

Conjecture:

Any CFT with:
|. Large-N expansion

2. Large gap in operator dimensions
has a bulk dual that is local to lengths ¢aas/Agap.

CFT ‘bootstrap’ problem:

Find consistency conditions which ensure this! @@@g



We'll study Lorentzian 4-point correlator in CFT4

-stay within two Rindler wedges

-get constraints from Regge limit: p — oo, pp fixed



Regge limit:

-localizes in time (in two null directions)
-spreads transversely over AdSq.,
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Contrast with ‘focusing things into the bulk’
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we won’t do the latter since it can’t be
done from within Rindler wedges

Locality in time alone will take us surprisingly far...



Logic:
Locality in time analyticity in dispersion
(aka causality) complex energies relations

For gapped S-matrices in flat space:

M(s,t) = / W(tdi, t/)Im./\/l(s,t’) +(t <> u)

Claim: this generalizes to any unitary CFT:

G(p',p') = /dpdﬁK(p’,ﬁ’;m p) dDisc [G (p, p)]|+(t <+ u)



dDisc G' = 5(0|[¢2, ¢3][¢1, $4]|0)

Properties:
® Positive & bounded

® Saturated by single-traces at large-N
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dDisc G = 5(0][¢2, ¢3][¢1, $4]0)

Properties:
® Positive & bounded

® Saturated by single-traces at large-N

Intuition: view correlator as scattering amplitude
O|T¢1---94|0) =5 = Gg +iM
(0|T 1 -+ - p4]0) = S* = Gg — iM*
(0]@2030104|0) =

= dDisc G is natural CFT version of Im M!!



dispersion relation for M at fixed-pp:

->

approaches

a constant
(use both OPE)

1 o0 / D /
M(w) =C + = / dw dDisc Glo, w) - (small cut)

T w — w’



Implications.

|. Imaginary part is positive in upper-half-plane

y dx’ ITmM(x')

> 0
(" —2)? + 97

Im M(z + 1y) = /

=ANEC: M(w)~ w</ dr Ty 4)34= </ dz"T14)> 0
[Hartman,Kundu&Tajdini ’ | 6]



Implications.

|. Imaginary part is positive in upper-half-plane

y dx’ ITmM(x')

Im M(z + iy) :/ (x’—x)2+y2> 0

=ANEC: M(w)~ w</ dr Ty 4)34= </ dz"T14)> 0
[Hartman,Kundu&Tajdini ’ | 6]

2. Rate of growth locally bounded in imaginary direction:
f dx’ y* ImM (z)
(@ =22+ _
f dx’ Im./\/l(a:’)
(x' —x)?+y?
=chaos bound ) <277 (in Rindler time w=e?(z1))

[Maldacena,Shenker&Stanford ’ | 5]

(yo, — 1) {log ImM(z + zy)} =




® Near perfect analogy with ingredients in the proof
of the Froissart-Matrin bound™:

ImM(s,t) >0 V 0<t<dm?®, 4m*<s<oo

lim |M(s,t)] < Cls|'te e <1

|s|— o0

® CFT has effective mass gap since 'AdS is like a box’
(and OPE makes proofs much easier!)
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What does this imply for OPE coefficients!?

partial waves: a;(s) = / df cos(j0)M(s,t(cosB))
y . dt’
disp. relation: M(s,t) :/ ~Im M(s,t")
m(t — 1) +(t <> u)

analyticity in spin  a;(s) :/ dn e M(s, t(cosh(n))
"10 +(=1)7(t < u)



What does this imply for OPE coefficients!?

partial waves: a;(s) = / df cos(j0) M (s,t(cosh))
y . dt’
disp. relation: M(s,t) :/ ~Im M(s,t")
m(t — 1) +(t <> u)

dne 7" M(s, t(cosh(n))
H1)i(t ¢ u)

in CFT, we (currently) lack the
second step, away from Regge limit!

analyticity in spin




‘tactical retreat’: alternative contour integral derivation

a;(s) = j[ d—w(wj + w7 )M(s,t(cos b))

w .
="

w| =1

u-channel t-channel
cut Cut




Alternative contour integral derivation (‘tactical retreat’)

a;(s) = j[ d—w(wj + w7 )M(s,t(cos b))

. .
[0 ="




CFT steps are the same: Euclidean OPE:
G(Za Z) — Z ij,AGj,A(Zv 2)
7,

® Actually, we first have to make A continuous:

G(Z, _) :512534—|—Z/ | —,C(j, A) Fj)A(Z,Z). J

= single-valued, needed for self-adjointness of Casimir

® Mellin-like contour, encodes OPE through poles:

. I\~ ng%],A
C(.]7A)N A_A/




invert OPE using orthogonality for principal series A=d/2+iv

%MM=JW$AMédmm%ggwmmGWWﬁ@A@ﬁ)

p=ow,p=o0/w

Tricky part is to find the analog of
2cos(j0) = w’ +w ™’
so we can split the ‘block+shadow’:
Fin(z,2) = F(+) + FJ( A)

[\

~ W’ ~

(w —0) (w — 00)



tricky because there are 8 basic solutions to
conformal Casimirs diff egs.: (quadratic and quartic)

< zxzK1)
Solutions related by symmetries:
9—2 —d — 7, A<+—d— A, A+—1—7.
Only 2 are nice (convergent) in Regge limit:
pure pure ~ (22)7/?

IA+1-d,j+d—1°> Y91-A j+d—1
So we have 4 parameters and 8 constraints

20



tricky because there are 8 basic solutions to
conformal Casimirs diff egs.: (quadratic and quartic)

< zxzK1)
Solutions related by symmetries:

9—2 —d — 7, A+—d— A, A+—1—7.
Only 2 are nice (convergent) in Regge limit:

pure pure N =\Jj/2
IA+1—dj+d—1> YJ1-A j+d—1 (22)

So we have 4 parameters and 8 constraints
one solution (!!!!)
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Result: CFT Froissart-Gribov formula

c(J,A) = / Inverse block| x [dDisc G|
0 A )

1
convergent

t-channel sum

block with
s-channel j and A

OPE coefficients  exchanged

(proved using unitarity&OPE

converges for j>| .
convergence in cross-channels)



A (boring) test: 2D Ising

) 1 2 N 2
G(ﬂ? /0) — (1 o ,02)1/4 | (1 L ,02)1/4
® Double discontinuity:

1= (P +p)+/pp
(L= )AL — )V

> ()

® Factorized integral against 2d (global) blocks

cia = fo(§+A) fo(j+2-A) = 5 fra(f + A) fo(f +2—A) + ...

L(OT(p + 252)
T(p+ %52)




® Residues at all poles do match global OPE!*

4

Cj)A — —Kj,AReSA/:AC(j, A/)

1 1 9 1
C - — C - — = — S —
0.1 = 227 64 Caa 40960’ Co.4 4096
1 35 9 1
457 65536 67 3670016 Ca6 2621440’ Co.7 1310720’

*never trust Mathematica’s Residue on 3F2’s........
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Application: Large spin bootstrap
Usual story: double-light-cone limit (2, z) — (0,1)
non-analytic behaviour in (1 — z) needs large spin:

Z — F( (1 — 2)%/? + regular

large spin in s-channel <= low twist in t-channel

= Solve OPE in asymptotic series in |/]

[Komargodski&Zhiboedoy,
Fitzpatrick,Kaplan,Poland&Simmons-Duffin,
Alday&Bissi&...

Kaviraj,Sen,Sinha&.. .,
Alday,Bissi,Perlmutter&Aharony,...]
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What about inversion formula?
1
c(j,A) ~ / dzdz )2 Z T2 F; A(2)dDiscG(z, 2)
0

OPE data encoded in A-poles from G~z7% as > — 0:

1 b
L A) = dz 772 Fi, A (2)dDiscG, (2
c(7,A) A S ></O ZZ i+A(Z)dDiscG,(2)

=large j+A pushes integral to (0,]) corner \/
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® Analytic result for t-channel power-law:

)gb@>b

Iﬁ,’b(ﬁ) = /o Z;(l — 2)%Tb g k7 (2) dDisc (1 ; §
) I D(A-a)r(h+ )
(=% -al(-%+b)  Th-1)

~1/n"

4 @7
r(h-% -1
(h+%+1)

(h=5%)

® FEarlier results reproduced by: ‘expand cross-channel
OPE in == and integrate termwise using (4.7)’

Z
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Asymptotic series in 3D lIsing
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What’s new:

® Replaced |/] expansion by convergent sum
(no need to expand in (1 —2)/z )

® Control over individual spins, not only
averages over many spins (‘no stick-out’)

® Can try to bound errors?
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Bulk Locality

A'+J’ —\ A'—J’
(1575)

1
dDisc G = Z sin(Z (A" — 2A)) (1 (7
P

J' A l

® Double-traces killed at lapge Nc (A’ = 2A + 2n + v/N?)

® Heavy operators killed unless p,p < A7, T

CFTs where dDisc G
= is saturated by a handful

of light primaries

Theories with
classical AdS dual
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dDisc G

T I

unknown
(heavy&non-
/Pperturbative)
lisht
(known)~ /e _
p~p
0 +— | >
~ 1/AGp 1
Cj A = /Fj,A dDiscG = Ci Al —+- Cj A
light heavy
‘minimal correction

solution’ small for j>2



Since F~ (pp)”/? heavy contribution decays with spin

Area set by stress-tensor two-point function




(Spin versus dimension)

Consider an AdS interaction with flat-space limit:

stu
This has spin two in the Regge limit in all channels:
stu = st(s+t) ~s° =5’ (s = 00,1t fixed)
Not constrained (Regge limit only localizes in time!),

but due to crossing symmetry, any interaction with
more derivatives will have a bounded coefficient

For TT¢¢, only one unconstrained spin-2 contact
interaction. For TTTT, none!



Summary

® Dispersion relation for OPE coefficients:
1

c(7,A) = / dpdp ga ; dDisc G
0

s-channel cross-channels

® |nput: CFT versions of analyticity&positivity as used
in Froissart-Martin’s theorem, consequence here of
the OPE in any unitary CFTp.

® Output:
-large-spin expansions with controllable errors
-AdS/CFT correlators using only ~few light fields

-bounds on higher-derivative terms — bulk locality



