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Motivation

Bootstrap Philosophy: bound the space of theories by 
imposing consistency conditions on physical observables.

Revisit the S-matrix Bootstrap program of the 60’s and 70’s.
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Figure 3: Shaded: the part of the (�
�

, �
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) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with n

max

= 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �

�

in this range, we ask: What is the maximal �
"

allowed by (5.3)?

The result is plotted in Fig. 3: only the points (�
�

,�
"

) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �

�

and �
"

error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the �

�

and �
"

error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  �"  1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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Bootstrap

Does the bootstrap approach work?
• For conformal field theories a natural set of consistency

conditions are the crossing symmetry equations and unitarity.
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We know how to exploit these equations very effectively and in
full generality because of new insights acquired since 2008.
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Figure 1: The best current bound (1.4), obtained by the method described in Section 5.
The subscript in f6 refers to the order of derivatives used to compute this bound.

1 The problem and the result

Operator dimensions in unitary Conformal Field Theories (CFT) are subject to important con-
straints known as unitarity bounds. In the simplest case of a scalar primary operator �, the
unitarity bound states that1

d � [�] � 1, (1.1)

d = 1 �� � is free. (1.2)

This classic result invites the following question: What happens if d = 1+�? In particular, is there
any sense in which the CFT (or at least its subsector not decoupled from �) should be close to
the free scalar theory if d is close to 1? For instance, do all operator dimensions in this subsector
approach their free scalar theory values in the limit d ! 1? The standard proof of the unitarity
bound [1] does not shed light on this question.

In this paper we will show that such continuity indeed holds for the operator ‘�2’, by which
we mean the lowest dimension scalar primary which appears in the OPE of � with itself:

�(x)�(0) ⇠ (x2)�d(1 + C|x|�min�2(0) + . . .) , C �= 0 . (1.3)

In free theory �min � [�2] = 2, and we will show that �min ! 2 in any CFT as d ! 1. More
precisely, we will show that in any 4D CFT

�min  f(d), (1.4)

where f(d) is a certain continuous function such that f(1) = 2. We will evaluate this function
numerically; it is plotted in Fig. 1 for d near 1.

We stress that bound (1.4) applies to the OPE �⇥� of an arbitrary scalar primary �. However,
since the function f(d) is monotonically increasing, the bound is strongest for the scalar primary
of minimal dimension.

1

Unless explicitly noted otherwise, all statements of this paper refer to D = 4 spacetime dimensions.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is

drawn using the �� and �� error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4

To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  ��  1 is

also a priori allowed.

5

In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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Figure 2: Upper bounds on ��
0 (the smallest conformal dimension of a spin-0 long multiplet

appearing in the O35c ⇥ O35c OPE) for large values of cT . The bounds are computed with
jmax = 20 and � = 19. The long multiplets of spin j > 0 are only restricted by unitarity.
The best fit for the last ten points (shown in black) is log(��
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0) = 4.55� 1.00 log cT .
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Figure 3: Upper bounds on ��
2, which is the smallest conformal dimension of a long multiplet

of spin-2 appearing in the O35c ⇥ O35c OPE. The long multiplets of spin j �= 2 are only
restricted by unitarity. These bounds are computed with jmax = 20 and � = 19 (orange),
� = 17 (black), and � = 15 (light brown). The plot on the right is a zoomed-in version of
the plot on the left. The dashed vertical lines correspond to the values of cT in Table 9.

of a spin-2 long multiplet. We obtain the bound on ��
2 under the assumption that

long multiplets of spin j �= 2 are only restricted by the unitarity condition. In other

words, we set ��
j = j + 1 for all j �= 2. In Figure 3, we plot the upper bound on ��

2

as a function of cT for � = 15 (in light brown), � = 17 (in black), and � = 19 (in

orange). The convergence as a function of � is poorer than in the ��
0 case, but it is

still reasonably good throughout, especially at large cT .
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Figure 4: The dots indicate the upper bound ��gap on the gap versus f(1/2), the four-point

function evaluated at the crossing symmetric point, at derivative orders ranging from 8 to

20. The solid line plots the extrapolation to infinite order using a quadratic fit. The minimal

f(1/2) and maximal gap are simultaneously saturated by an untwisted sector correlator at

the free orbifold point. The shaded region represents the gap in the OPE of twist fields at

a fixed point of T 4/Z2 with a rectangular T 4, where the minimal f(1/2) and maximal gap

are achieved by a square T 4 at radii Ri = 1 (1/
p

2 times the self-dual radius).

and up to d = 20, unless noted otherwise.

Numerical results. The first two columns of Table 2 show the numerical results for

the optimal ��gap without the information of f(1/2), for up to d = 30 derivative orders.

The conformal block is evaluated to q40 order to accommodate the high derivative orders.

Within numerical error, ��gap approaches 2 as we increase the derivative order. This bound

is saturated by a free fermion correlator at the free orbifold point, as was explained in

Section 6.1.

After incorporating the information of f(1/2) (reverting to the default setting of param-

eters), we find that f(1/2) less than a certain threshold f(1/2)min is completely ruled out

(��gap = 0). Above this threshold, ��gap starts from ��gap � 2 at f(1/2) = f(1/2)min and then

monotonically decreases. Table 2 shows the values of f(1/2)min, which seem to asymptote

to f(1/2)min � 3 at infinite derivative order. Figure 4 plots the dependence of ��gap on

f(1/2). It is observed that the limiting value ��gap as f(1/2) ! 1 is approximately equal

to another quantity ��crt � 1/4 that we will introduce in the next section. Note that for

smaller values of f(1/2), the numerical bound ��gap appears to converge exponentially with

the derivative order d, while for larger values of f(1/2) the convergence is much slower and

we extrapolate the bound to infinite d using a quadratic fit. There seems to be a crossover
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[Rattazzi, Rychkov, Tonni, Vichi (2008); many others]
• Historically speaking the conformal bootstrap is however

predated by the S-matrix bootstrap for non-conformal QFTs -
a significant research program in the 1960s and 1970s.

[Rattazzi, Rychkov, Tonni, Vichi ’08] + many others

from [El-Showk et al ’12]

Goal: extend recent success in CFT to massive QFT.
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S-matrix	Bootstrap 
in	2D	QFT



2	to	2	Scattering	Amplitude

Figure 1: The 2 ! 2 S-matrix element. Time runs vertically in this figure. In two dimensions
energy-momentum conservation implies there is only one independent Mandelstam variable such
that S = S(s) with

p
s the centre of mass energy.

at special points. We hope these results will constitute the first steps in a general program
aimed at extending the successful CFT bootstrap to massive QFT’s.

In a companion paper [5] we analyzed this problem from the conformal bootstrap point
of view. There we put the massive QFTs in an Anti de Sitter box. This induces conformal
theories living at the AdS boundary which we can numerically study by means of the con-
formal bootstrap. The spectrum of dimensions and structure constants of these conformal
theories can be translated back to the spectrum of masses and couplings of the quantum
field theory in the bulk. The analytic bounds described below by means of the S-matrix
bootstrap turn out to beautifully match those from the conformal bootstrap numerics. This
constitutes a non-trivial check both of the analytic results described here as well as the AdS
construction proposed in [5] and the associated numerics.

2 Amplitude Bootstrap

Our main object of study will be the 2 ! 2 S-matrix elements of a relativistic two dimensional
quantum field theory. We will further focus on the elastic scattering process involving iden-
tical chargeless particles of mass m. For the most part, we shall take the external particles
to be the lightest in the theory.2

Let us very briefly review a few important properties of this object, setting some notation
along the way. A major kinematical simplification of 2 ! 2 scattering in two dimensions is
that there is only a single independent Mandelstam invariant. In particular, for scattering
involving particles of identical masses there is zero momentum transfer as depicted in figure 1.
If all external particles are identical, crossing symmetry which flips t and s simply translates
into3

S(s) = S(4m2 � s) , (1)

2 Strictly speaking, what we shall use is that any two particle cut in the theory opens up after the two
particle cut of the external particles in this S-matrix element. The 2 ! 2 S-matrix element of the lightest
particles is also free of Coleman-Thun singularities [6] (which render the analysis more involved and which
will not be considered here). Sometimes, symmetry alone forbids such cuts or poles. In those case, the
restriction to the lightest particle can be relaxed.

3Interchanging particles 3 and 4 leads to t = 0, u = 4m

2 � s and the same amplitude S(s).

4

k2i = m2

S(s) =
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Figure 2: Analytic properties of the S-matrix element S(s) for the scattering of the lightest particles
of the theory. We have a cut starting at s = 4m

2 corresponding to the two particle production
threshold. As implied by (1), we have another cut starting at t = 4m

2 (or s = 0) describing particle
production in the t-channel process. The segment s 2 [0, 4m

2] between the two particle cuts is
where most of the action takes place for us. It is here that poles corresponding to fundamental
particles or their bound-states can appear as in (3). We distinguish s and t channel poles (solid
and empty circles respectively) by the sign of their residues. When the external particles are not
the lightest in the theory, we sometimes have more singularities such as further two particle cuts
and/or Coleman-Thun poles.

while unitarity states that for physical momenta, i.e for centre of mass energy greater
than 2m, probability is conserved,

|S(s)|2  1 , s > 4m2 . (2)

We shall come back to this relation in more detail below, in section 2.2.

Finally, we have the analytic properties of S(s) depicted in figure 2. Of particular im-
portance for us are the S-matrix poles located between the two particle cuts. Such poles are
associated to single-particle asymptotic states. Note that there is no conceptual di↵erence
between fundamental particles or bound-states here. We shall denote both as particles in
what follows. The poles in S always come in pairs as

S ' �J
j

g2

j

s � m2

j

and S ' �J
j

g2

j

4m2 � s � m2

j

,
⇣

J
j

=
m4

2m
j

q
4m2 � m2

j

⌘
(3)

corresponding to an s- or t-channel pole respectively. Here we normalize g2

j

to be the residue
in the invariant matrix element T which di↵ers from S by the subtraction of the identity
plus some simple Jacobians related to the normalization of delta functions in the connected
versus disconnected components. This justifies the prefactors J

j

in (3).4 Note that we can

4 We have S ⌘ 1 ⇥ S(s) = 1 + i(2⇡)2�(2)(P ) T . The contribution 1 = (2⇡)24E1E2(�(~k1 � ~

k3)�(~k2 �
~

k4) + (~k1 $ ~

k2)) represents the (disconnected) contribution of the free propagation while T accounts for

the connected contribution. Here we are we denoting the spatial momentum as ~

k even though it is just a
number just to distinguish it from the 2-momentum k. Now, the delta function multiplying T is the energy-
momentum conservation delta function �

(2)(P ) = �

(2)(k1 + k2 � k3 � k4). On the support of the solution
~
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k3, ~
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Figure 4: Maximum cubic coupling g

max

1

between the two external particles of mass m and the
exchanged particle of mass m

1

. Here we consider the simplest possible spectrum where a single
particle of mass m

1

shows up in the elastic S-matrix element describing the scattering process of
two mass m particles. The red dots are the numerical results. The solid line is an analytic curved
guessed above (9) and derived in the next section. The blue (white) region corresponds to allowed
(excluded) QFT’s for this simple spectrum.

the integral in (6) to obtain
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where K
a

(s) are explicit functions of s given in appendix A. Evaluating this expression at
some value s

0

> 4m2 and plugging it into equation (2) gives us a quadratic constraint in
the space of variables g2

j

, ⇢
n

and S1. The space of solutions of the constraints is then the
intersection of all these regions for all values of s

0

> 4m2.6 It now su�ces to start inside this
region and move in the direction of increasing g2

1

until we hit the boundary of the region and
can move no more.

In practice, these numerics are simple enough that they can be performed in a few seconds
in Mathematica using the built-in function FindMaximum which allows one to search for
the maximum value of a function inside of some constraint region. For more details see
appendix A.

To illustrate, consider the simplest possible example in which only a particle of mass m
1

couples to the external particle of mass m. In other words, we consider an S-matrix with
a single s-channel pole whose residue we are trying to maximize. We can then follow the
procedure outlined above to find the maximum value of the coupling gmax

1

for each value
of m

1

/m. The results are depicted in figures 4 and 5 .

6We can visualize this region as the intersection of many cylinders, given by equation (23), in a high
dimensional space.
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More generally, for m
1

= 1 and two other masses m
2

,m
3

< 2 we get the optimal bound
in figure 6. We have

S
max m

1

residue

=

8
>>>>>>>><

>>>>>>>>:
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] region A
[↵
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] [↵
2

] [↵
3

] region B
� [↵
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3
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1

] [↵
2

] [↵
3

] region E
[↵

1

] [↵
3

] region F
� [↵

1

] region G

(25)

with mi = 2 cos(↵i/2) and the short-hand notation

[↵] ⌘ sinh(✓) + i sin(↵)

sinh(✓)� i sin(↵)
,

for a CDD factor. The analysis is in the CDDs m2m3 plane.nb notebook. Some interesting
sections of the general three dimensional plot can also be found there [to add].
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Numerical	approach

Figure 2: Mapping from the cut s-plane to the unit disk given in equation (2).

symmetric point s = t = 2m2. A similar map is also very useful in conformal bootstrap
studies [?]. It is illustrated in figure 2. The top of the cut maps to the upper boundary of
the unit disk and the bottom of the cut maps to the lower boundary of the disk. The interval
[0, 4m2] maps to the interval ⇢ 2

⇥
2
p
2� 3, 1

⇤
so this is where we find the poles associated

to stable particles.

Apart from the poles corresponding to single particle exchanges, S(⇢
s

, ⇢
t

) is analytic for
both ⇢

s

and ⇢
t

inside the unit disk and thus we can write I changed the signs of the poles to
be consistent with our previous paper

S(s, t) = � ĝ2

s�m2

BS

� ĝ2

t�m2

BS

+
1X

a,b=0

c
ab

⇢a
s

⇢b
t

(3)

Crossing symmetry is guaranteed provided the coe�cients of the convergent Taylor expansion
are symmetric, c

ab

= c
ba

. Since we are going to evaluate the S-matrix on the constraint surface
s+ t = 4m2 we can simplify further this ansatz. In terms of ⇢

s

and ⇢
t

this constraint yields

⇢2
s

⇢
t

+ ⇢2
t

⇢
s

+ 4⇢
s

⇢
t

+ ⇢
s

+ ⇢
t

= 0 (4)

This means the representation (3) has a big redundancy. We can always add to it polynomials
in the left hand side of the constraint (4). To remove this ambiguity, we can set to zero many
of constants c

ab

(in appendix B we explained in detail which c
ab

can be set to zero).

Numerically, we set a cut-o↵ in the sum (3) and impose unitarity for s > 4 which
corresponds to the upper unit disk where ⇢

s

= ei� with � 2 [0, ⇡]. We evaluate |S(s, t)|2
in a uniform grid in the � interval which gives a set of quadratic constraint equations on
the c

ab

and the residues of the poles. We optimize ĝ2 in the usual way using FindMaximum

for example. The outcome of this third approach is in perfect agreement with our previous
analytical and numerical results as illustrated in figure 3 [need to change?].

To summarize: In two dimensions we can find the optimal S-matrix with largest possible
residue analytically. We do so by quotienting the S-matrix by a clever guess and using the
maximal absolute value principle to show that this ratio should be one. We recovered the
same analytic results numerically in two ways. In the first one finds a parametrization of the

6

disk.1 Its maximum residue – which is where we measure the (square of the) coupling to the
bound-state – is therefore 1 and the corresponding optimal S-matrix is therefore S(z) = 1/z.

To recover the results of [2] – see e.g. formula (36) therein – we simply need to take into
account the Jacobian to go from z to s, the simple kinematical multiplicative factors relating
the S-matrix and the T-matrix and a factor of m4 to render the coupling dimensionless. All
other results of [2] for more complicated bound-state spectra can be treated through simple
generalizations of this simple example!2

Although redundant at this point, it is instructive for what will come next in higher
dimensions to set up this exactly solvable problem numerically. We define a function S(z)
in the unit circle as a pole plus a convergent Taylor expansion which we truncate at some
large power zM . Then we simply maximize the residue with the constraint that in a tightly
spaced grid of K points on the unit circle unitarity is satisfied. In Mathematica, the simple
code does the job:

M=20; K=50;

S[z_] = residue/z + Sum[c[n] z^n, {n, 0, M}];

variables = {residue}~Join~Table[c[n], {n, 0, M}];

constraints = Table[S[Exp[I x]] S[Exp[-I x]] <= 1, {x, 0, \[Pi], \[Pi]/K}];

FindMaximum[{residue, constraints}, variables]

This nicely yields residue ' 1 and c
n

' 0 with great numerical accuracy which we can
always improve. The reader is encouraged to copy/paste this and try by him/herself. It
should take about 2 or 3 seconds to run.

As a last warm-up it is very useful to solve this very same problem in a third way since
this last approach is the closest to what we will do in higher dimensions. In this last approach
to the problem we start by thinking of the S-matrix as being a function of both s and t as
if they were independent variables; they are not since s + t + u = 4m2 and u = 0 in two
dimensions.3 Then S(s, t) is a function with a cut for s > 4m2, another cut for t > 4m2

as well as poles for single-particle processes in the s- and t- channels. Next we use a very
convenient change of variable which maps the full complex plane with those cuts removed
into the unit disk. This is the map

s ! ⇢
s

=

p
4m2 � s

0

�
p
4m2 � sp

4m2 � s
0

+
p
4m2 � s

, s =
s
0

(1� ⇢
s

)2 + 16m2⇢
s

(1 + ⇢
s

)2
. (2)

where s
0

< 4m2 is a free parameter that we can choose according to convenience. In the
present case, it is convenient to choose s

0

= 2m2 so that ⇢
s

= 0 corresponds to the crossing

1Note that this condition also holds on the lower half of the disk due to real analyticity.
2Strictly speaking the map to the unit circle is not even needed here. It su�ces to assume there is no

essential singularity at infinity so that the unitarity cut is the boundary of the region where S(s) takes values.
Then S(s)/z(s)�1 is free of singularities in the physical region and obeys |S(s)|  1 on the cuts which are
the boundaries of this region. Hence it can at most be one inside by the maximum modulus principle and
the bound on the residue of S follow. This is the argument in [28]. We still found the unit circle discussion
to be useful as a warm-up to the higher dimensional case.

3More precisely, either u = 0 or t = 0 corresponding to backward and forward scattering.
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Figure 2: Mapping from the cut s-plane to the unit disk given in equation (2).
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residue analytically. We do so by quotienting the S-matrix by a clever guess and using the
maximal absolute value principle to show that this ratio should be one. We recovered the
same analytic results numerically in two ways. In the first one finds a parametrization of the
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disk.1 Its maximum residue – which is where we measure the (square of the) coupling to the
bound-state – is therefore 1 and the corresponding optimal S-matrix is therefore S(z) = 1/z.
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account the Jacobian to go from z to s, the simple kinematical multiplicative factors relating
the S-matrix and the T-matrix and a factor of m4 to render the coupling dimensionless. All
other results of [2] for more complicated bound-state spectra can be treated through simple
generalizations of this simple example!2

Although redundant at this point, it is instructive for what will come next in higher
dimensions to set up this exactly solvable problem numerically. We define a function S(z)
in the unit circle as a pole plus a convergent Taylor expansion which we truncate at some
large power zM . Then we simply maximize the residue with the constraint that in a tightly
spaced grid of K points on the unit circle unitarity is satisfied. In Mathematica, the simple
code does the job:

M=20; K=50;
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FindMaximum[{residue, constraints}, variables]

This nicely yields residue ' 1 and c
n

' 0 with great numerical accuracy which we can
always improve. The reader is encouraged to copy/paste this and try by him/herself. It
should take about 2 or 3 seconds to run.

As a last warm-up it is very useful to solve this very same problem in a third way since
this last approach is the closest to what we will do in higher dimensions. In this last approach
to the problem we start by thinking of the S-matrix as being a function of both s and t as
if they were independent variables; they are not since s + t + u = 4m2 and u = 0 in two
dimensions.3 Then S(s, t) is a function with a cut for s > 4m2, another cut for t > 4m2

as well as poles for single-particle processes in the s- and t- channels. Next we use a very
convenient change of variable which maps the full complex plane with those cuts removed
into the unit disk. This is the map

s ! ⇢
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=

p
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0

�
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where s
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< 4m2 is a free parameter that we can choose according to convenience. In the
present case, it is convenient to choose s

0

= 2m2 so that ⇢
s

= 0 corresponds to the crossing

1Note that this condition also holds on the lower half of the disk due to real analyticity.
2Strictly speaking the map to the unit circle is not even needed here. It su�ces to assume there is no

essential singularity at infinity so that the unitarity cut is the boundary of the region where S(s) takes values.
Then S(s)/z(s)�1 is free of singularities in the physical region and obeys |S(s)|  1 on the cuts which are
the boundaries of this region. Hence it can at most be one inside by the maximum modulus principle and
the bound on the residue of S follow. This is the argument in [28]. We still found the unit circle discussion
to be useful as a warm-up to the higher dimensional case.

3More precisely, either u = 0 or t = 0 corresponding to backward and forward scattering.
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Figure 2: Mapping from the cut s-plane to the unit disk given in equation (2).
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for example. The outcome of this third approach is in perfect agreement with our previous
analytical and numerical results as illustrated in figure 3 [need to change?].

To summarize: In two dimensions we can find the optimal S-matrix with largest possible
residue analytically. We do so by quotienting the S-matrix by a clever guess and using the
maximal absolute value principle to show that this ratio should be one. We recovered the
same analytic results numerically in two ways. In the first one finds a parametrization of the

6

disk.1 Its maximum residue – which is where we measure the (square of the) coupling to the
bound-state – is therefore 1 and the corresponding optimal S-matrix is therefore S(z) = 1/z.

To recover the results of [2] – see e.g. formula (36) therein – we simply need to take into
account the Jacobian to go from z to s, the simple kinematical multiplicative factors relating
the S-matrix and the T-matrix and a factor of m4 to render the coupling dimensionless. All
other results of [2] for more complicated bound-state spectra can be treated through simple
generalizations of this simple example!2

Although redundant at this point, it is instructive for what will come next in higher
dimensions to set up this exactly solvable problem numerically. We define a function S(z)
in the unit circle as a pole plus a convergent Taylor expansion which we truncate at some
large power zM . Then we simply maximize the residue with the constraint that in a tightly
spaced grid of K points on the unit circle unitarity is satisfied. In Mathematica, the simple
code does the job:

M=20; K=50;

S[z_] = residue/z + Sum[c[n] z^n, {n, 0, M}];

variables = {residue}~Join~Table[c[n], {n, 0, M}];

constraints = Table[S[Exp[I x]] S[Exp[-I x]] <= 1, {x, 0, \[Pi], \[Pi]/K}];

FindMaximum[{residue, constraints}, variables]

This nicely yields residue ' 1 and c
n

' 0 with great numerical accuracy which we can
always improve. The reader is encouraged to copy/paste this and try by him/herself. It
should take about 2 or 3 seconds to run.

As a last warm-up it is very useful to solve this very same problem in a third way since
this last approach is the closest to what we will do in higher dimensions. In this last approach
to the problem we start by thinking of the S-matrix as being a function of both s and t as
if they were independent variables; they are not since s + t + u = 4m2 and u = 0 in two
dimensions.3 Then S(s, t) is a function with a cut for s > 4m2, another cut for t > 4m2

as well as poles for single-particle processes in the s- and t- channels. Next we use a very
convenient change of variable which maps the full complex plane with those cuts removed
into the unit disk. This is the map

s ! ⇢
s

=

p
4m2 � s

0

�
p
4m2 � sp

4m2 � s
0

+
p
4m2 � s

, s =
s
0

(1� ⇢
s

)2 + 16m2⇢
s

(1 + ⇢
s

)2
. (2)

where s
0

< 4m2 is a free parameter that we can choose according to convenience. In the
present case, it is convenient to choose s

0

= 2m2 so that ⇢
s

= 0 corresponds to the crossing

1Note that this condition also holds on the lower half of the disk due to real analyticity.
2Strictly speaking the map to the unit circle is not even needed here. It su�ces to assume there is no

essential singularity at infinity so that the unitarity cut is the boundary of the region where S(s) takes values.
Then S(s)/z(s)�1 is free of singularities in the physical region and obeys |S(s)|  1 on the cuts which are
the boundaries of this region. Hence it can at most be one inside by the maximum modulus principle and
the bound on the residue of S follow. This is the argument in [28]. We still found the unit circle discussion
to be useful as a warm-up to the higher dimensional case.

3More precisely, either u = 0 or t = 0 corresponding to backward and forward scattering.

5

s0 < 4m2s

Ansatz: S
ext

(s, t) =
g2
b

s�m2
b

+
g2
b

t�m2
b

+
X

a,b=0

c(ab)⇢
a

s

⇢b
t

Crossing symmetry and analyticity are automatic. 
Unitarity gives quadratic constraints:

��S
ext

(s, 4m2 � s)
��2  1 , s > 4m2



Numerical	approach
Ansatz:

S
ext

(s, t) =
g2
b

s�m2
b

+
g2
b

t�m2
b

+
X

a,b=0

c(ab)⇢
a

s

⇢b
t

Crossing symmetry and analyticity are automatic. 
Unitarity gives quadratic constraints:

��S
ext

(s, 4m2 � s)
��2  1 , s > 4m2

a+ b  N
max

Truncate to finite number of variables and quadratic constraints

{g2b , c(ab)} at s = s1, s2, . . . , sM



Numerical	approach
Ansatz:

S
ext

(s, t) =
g2
b

s�m2
b

+
g2
b

t�m2
b

+
X

a,b=0

c(ab)⇢
a

s

⇢b
t

Crossing symmetry and analyticity are automatic. 
Unitarity gives quadratic constraints:

��S
ext

(s, 4m2 � s)
��2  1 , s > 4m2

a+ b  N
max

Truncate to finite number of variables and quadratic constraints

{g2b , c(ab)} at s = s1, s2, . . . , sM

Use semidefinite programming (SDPB) to maximize        subject to 
these constraints. This reproduces the analytic solution as 

g2b
N

max

! 1

[Simmons-Duffin ’15]



S-matrix	Bootstrap 
in	d+1	QFT



2	to	2	Scattering	Amplitude

and there we will not have the luxury of the analytic results to cross-check our results. The
theorem alluded to above generalizes to that case as well and is key in providing confidence
for the higher dimensional numerics.

There is also another more pedestrian explanation of why the double taylor expansion
numerics had to work which we present in appendix A; however, contrary to the discussion
above, it makes use of particular features of the two dimensional problem and is not that
useful as a warm up to the higher dimensional case.

3 Higher Dimensions

Let us next consider scattering amplitudes in d + 1 spacetime dimensions. We consider
again the elastic scattering process of two identical real scalar particles of mass m. In our
conventions the S-matrix element is
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which of course obey s+ t+u = 4m2, and we henceforth work in units such that m2 = 1. We
often write M(s, t) ⌘ M(s, t, 4� s� t). In the channel under consideration s is the squared
center-of-mass energy and the scattering angle is given by

x = cos(✓) = 1 +
2t

s� 4
= �1� 2u

s� 4
(8)

Physical values of the Mandelstam invariants are therefore 4  s and 4� s  t  0. We can
project onto channels with definite angular momentum by introducing the partial amplitudes
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u = 4 and consider three-variable functions M(s, t, u). Then we transform the variables
(s, t, u) ! (⇢

s

, ⇢
t

, ⇢
u

) using the map (2). In this case, it is convenient to choose s
0

= 4

3

so
that ⇢

s

= ⇢
t

= ⇢
u

= 0 corresponds to the crossing symmetric point s = t = u = 4

3

. Now,
since the transformation ⇢

s

maps the s-plane minus the right cut starting at s = 4 to the
unit disk, we see that in the ⇢ variables all the cuts lie outside the polydisk �3 defined by
|⇢

s

| < 1, |⇢
t

| < 1 and |⇢
u

| < 1. Modulo the poles, which are easily subtracted, it is therefore
natural to write
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where the triple ⇢ series converges inside �3, and for definiteness we put in a single scalar
bound state of mass m

b

. The demands of crossing symmetry are implemented by demanding
that the coe�cients ↵

abc

are totally symmetric in their indices. When restricted to the
surface defined by s+ t+u = 4 the ansatz (13) obeys the analyticity and crossing symmetry
constraints. It is perhaps more surprising that the converse is also true: any function obeying
the analyticity constraints on the surface s + t + u = 4 can be extended to a function on
�3, analytic modulo the poles, and therefore can be written in the form (13). This follows
from a mathematical theorem known as Cartan’s theorem B, which is a statement about the
vanishing of higher cohomologies of coherent analytic sheaves on Stein manifolds [?] – in the
case at hand this implies that there is no obstruction to an extension away from the surface
s+ t+ u = 4.8

The triple ⇢ expansion in equation (13) is the starting point for our numerical work. Our
approach is to restrict the expansion to a finite sum by imposing

a+ b+ c  N
max

(14)

and then further restricting to the constraint surface s + t + u = 4 which is given by a
polynomial equation

⇢2
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⇢2
t

⇢
u

+ ⇢2
s

⇢2
u

⇢
t

+ ⇢2
t

⇢2
u

⇢
s

+ (lower degree terms) = 0 (15)

and which in practice allows us to eliminate many terms in (13) (in appendix B we explain
in detail which terms can be set to zero). The remaining freedom in our ansatz then consists
of the finitely many remaining ↵

abc

together with the bound state parameters; since this is a
finite-dimensional space we can use a computer to numerically explore the space of scattering
amplitudes. Of course we want to keep N

max

as large as possible. As we will see, in fortunate
cases the numerical results stabilize already for feasible values of N

max

, and in other cases
we can extrapolate from the numerical results.

It will be the job of the computer to impose the unitarity constraints, which are quadratic
constraints in the parameters g2 and ↵

abc

. Rather than checking the infinity of constraints
for all s and `, we impose a cuto↵ and check that unitarity constraints are obeyed only for
`  `

max

and along a grid of values for s. Experimentally we observe that our results remain

8In contrast to the Mandelstam representation, notice that our ansatz (13) ‘solves’ the constraints of
analyticity and crossing symmetry without demanding specific asymptotic behavior for large values of the
Mandelstam invariants.
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b

, using a triple rho expansion of the
amplitude for the given values of N

max

an d after imposing the unitarity constraints. `
max

=??

meaningful if `
max

is not much smaller than N
max

and if the grid is su�ciently refined. In
appendix ?? we discuss the dependence on these parameters in more detail, and outline the
numerical implementation.

4 Results

4.1 Maximal coupling

For our first result we consider a scattering amplitude with a single pole corresponding to
the exchange of a scalar particle of mass m

b

, exactly as in our ansatz (13), and maxmimize
the value of the residue g2 as a function of m

b

.

In figure 4 we plot the maximum absolute value of the coupling |g| defined as the residue
of the pole, with the di↵erent curves corresponding to di↵erent values of N

max

. We have
obtained this plot by maximinzing |g| for a sequence of values of m

b

and the indicated curve
is an interpolation through our data points. The plot is rather rich; we discuss its key features
one by one.

• Convergence with N
max

. For m
b

<
p
2 we observe that |g|

max

still varies significantly
with N

max

, whereas for m
b

>
p
2 the values of |g|

max

appear to be nearly stationary
as we vary N

max

. We have no explanation for this disparate behavior. As shown in
fig ??, we can extrapolate to infinite N

max

and appear to get a finite answer in either
domain. We expect this value to correspond to an upper bound on |g| for any scattering
amplitude that obeys the constraints of the previous section.

• Peak near m
b

⇠
p
2. The clear peak is reminiscent of two-dimensional scattering
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) achieved with the ansatz (13)
(with g = 0). We impose the unitarity constraint (11) for all `  `

max

. Convergence requires
larger `

max

for higher values of N
max

. With this ansatz, the maximal quartic coupling continues to
increase significantly with N

max

even for N
max

= 20. The black line indicates the value (see main
text) achieved in the explicit “amplitude” of [33] while the red line indicates the rigorous upper
bound of [32]. For large enough `

max

and N

max

our curves must eventually form a plateau between
these two lines, however the convergence is so poor that this cannot be inferred from the plot.

singularity of the form (s�4)�1/2 corresponding to a bound state siting precisely at threshold.
Physically this is intuitive: the positive sign of the amplitude corresponds to an attractive

interaction.10 The situation in which the interaction is as attractive as possible without
introducing new bound states occurs just at the point where a resonance is pulled all the
way to the threshold. Mathematically it is natural that to make the amplitude as big as
possible at the symmetric point it should be made as big as possible at threshold. Figure 6
shows the bound on � with the threshold bound state included in the anstaz. This amounts
to adding

↵

✓
1

⇢
s

� 1
+

1

⇢
t

� 1
+

1

⇢
u

� 1

◆
(18)

to the ansatz (13) where now ↵ is another parameter to be varied. This singularity does
not cause a violation of unitarity because it is canceled by the phase-space volume factor
in (11). One can see that convergence is now quite rapid as indicated by the broad plateau
already seen at modest values of `

max

and N
max

. The height of the plateau is 2.661..., which
is below the rigorous bound of [32] as required. Given the flexibility of our anstaz we expect
this bound to represent the strictest possible bound that derives from unitarity, crossing and
analyticity of a single amplitude.11

Let us now consider the lower bound for which our results are shown in figure 7. As
in the case of the upper bound (without the threshold singularity) the convergence is quite
slow in N

max

. Unfortunately the addition of a threshold bound-state of the form (18) cannot

10For example in a non-relativistic approximation this would correspond to an attractive delta function
potential [34].

11One could of course try to derive stronger bounds by including constraints from processes involving more
particles.
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↵(abc)⇢
a
s⇢

b
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u

u = 4 and consider three-variable functions M(s, t, u). Then we transform the variables
(s, t, u) ! (⇢

s

, ⇢
t

, ⇢
u

) using the map (2). In this case, it is convenient to choose s
0

= 4

3

so
that ⇢

s

= ⇢
t

= ⇢
u

= 0 corresponds to the crossing symmetric point s = t = u = 4

3

. Now,
since the transformation ⇢

s

maps the s-plane minus the right cut starting at s = 4 to the
unit disk, we see that in the ⇢ variables all the cuts lie outside the polydisk �3 defined by
|⇢

s

| < 1, |⇢
t

| < 1 and |⇢
u

| < 1. Modulo the poles, which are easily subtracted, it is therefore
natural to write

M(s, t, u) = � g2

s�m2

b

� g2

t�m2

b

� g2

u�m2

b

+
X

a,b,c=0

↵
abc

⇢a
s

⇢b
t

⇢c
u

(13)

where the triple ⇢ series converges inside �3, and for definiteness we put in a single scalar
bound state of mass m

b

. The demands of crossing symmetry are implemented by demanding
that the coe�cients ↵

abc

are totally symmetric in their indices. When restricted to the
surface defined by s+ t+u = 4 the ansatz (13) obeys the analyticity and crossing symmetry
constraints. It is perhaps more surprising that the converse is also true: any function obeying
the analyticity constraints on the surface s + t + u = 4 can be extended to a function on
�3, analytic modulo the poles, and therefore can be written in the form (13). This follows
from a mathematical theorem known as Cartan’s theorem B, which is a statement about the
vanishing of higher cohomologies of coherent analytic sheaves on Stein manifolds [?] – in the
case at hand this implies that there is no obstruction to an extension away from the surface
s+ t+ u = 4.8

The triple ⇢ expansion in equation (13) is the starting point for our numerical work. Our
approach is to restrict the expansion to a finite sum by imposing

a+ b+ c  N
max

(14)

and then further restricting to the constraint surface s + t + u = 4 which is given by a
polynomial equation

⇢2
s

⇢2
t

⇢
u

+ ⇢2
s

⇢2
u

⇢
t

+ ⇢2
t

⇢2
u

⇢
s

+ (lower degree terms) = 0 (15)

and which in practice allows us to eliminate many terms in (13) (in appendix B we explain
in detail which terms can be set to zero). The remaining freedom in our ansatz then consists
of the finitely many remaining ↵

abc

together with the bound state parameters; since this is a
finite-dimensional space we can use a computer to numerically explore the space of scattering
amplitudes. Of course we want to keep N

max

as large as possible. As we will see, in fortunate
cases the numerical results stabilize already for feasible values of N

max

, and in other cases
we can extrapolate from the numerical results.

It will be the job of the computer to impose the unitarity constraints, which are quadratic
constraints in the parameters g2 and ↵

abc

. Rather than checking the infinity of constraints
for all s and `, we impose a cuto↵ and check that unitarity constraints are obeyed only for
`  `

max

and along a grid of values for s. Experimentally we observe that our results remain

8In contrast to the Mandelstam representation, notice that our ansatz (13) ‘solves’ the constraints of
analyticity and crossing symmetry without demanding specific asymptotic behavior for large values of the
Mandelstam invariants.
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(13) (with g = 0) plus the term (18). With this improved ansatz, the maximal quartic coupling
e↵ectively saturates for N
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& 6.

save us here. Indeed analysis of the ` = 0 phase shift at the threshold shows that such a
singularity cannot decrease the lower bound without violating unitarity since (18) will lead
to an ` = 0 phase shift of the form

e2i�0(s)|
s! 4

= 1 +
1

16
p
6⇡

↵ (19)

at threshold. At the same time at the symmetric point we have

M(4/3, 4/3, 4/3) = �3↵ + ↵
000

(20)

This means we should take ↵ > 0 to give a negative contribution to �, but (19) implies
that this would cause a violation of unitarity at threshold. Physically this makes sense –
we do not expect a repulsive force to draw a resonance up to threshold since increasing the
repulsiveness of the force does not favour the formation of bound states. Unfortunately we
are not able to identify the relevant singularity in this case and thus are not able to improve
the slow convergence.

One could ask how close these bounds are to best possible bounds. As for the upper
bound, in [33] an explicit amplitude was constructed satisfying analyticity, crossing and uni-
tarity which attains a value at the symmetric point of 2.62, thus providing a lower bound for
the upper bound and a fairly small window in which the best bound must reside. Beautifully,
our own bound falls neatly within this window as it must

2.62 < 2.661 < 2.75. (21)

For the lower bound the same authors are again able to construct an explicit amplitude [35],
but the best possible value they could obtain at the symmetric point was �1.69 thus falling
quite short of the rigorous bound �8.2. They conclude that this means either that the lower
bound is quite far from optimal or that the behaviour of the amplitude which provides this
bound is quite “wild” so as to not be contained within the space of functions they explored.

14

T (s, t, u) = �

✓
1

⇢s � 1
+

1

⇢t � 1
+

1

⇢u � 1

◆
+

X

a,b,c=0

↵(abc)⇢
a
s⇢

b
t⇢

c
u

u = 4 and consider three-variable functions M(s, t, u). Then we transform the variables
(s, t, u) ! (⇢

s

, ⇢
t

, ⇢
u

) using the map (2). In this case, it is convenient to choose s
0

= 4

3

so
that ⇢

s

= ⇢
t

= ⇢
u

= 0 corresponds to the crossing symmetric point s = t = u = 4

3

. Now,
since the transformation ⇢

s

maps the s-plane minus the right cut starting at s = 4 to the
unit disk, we see that in the ⇢ variables all the cuts lie outside the polydisk �3 defined by
|⇢

s

| < 1, |⇢
t

| < 1 and |⇢
u

| < 1. Modulo the poles, which are easily subtracted, it is therefore
natural to write

M(s, t, u) = � g2

s�m2

b

� g2

t�m2

b

� g2

u�m2

b

+
X

a,b,c=0

↵
abc

⇢a
s

⇢b
t

⇢c
u

(13)

where the triple ⇢ series converges inside �3, and for definiteness we put in a single scalar
bound state of mass m
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. The demands of crossing symmetry are implemented by demanding
that the coe�cients ↵
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are totally symmetric in their indices. When restricted to the
surface defined by s+ t+u = 4 the ansatz (13) obeys the analyticity and crossing symmetry
constraints. It is perhaps more surprising that the converse is also true: any function obeying
the analyticity constraints on the surface s + t + u = 4 can be extended to a function on
�3, analytic modulo the poles, and therefore can be written in the form (13). This follows
from a mathematical theorem known as Cartan’s theorem B, which is a statement about the
vanishing of higher cohomologies of coherent analytic sheaves on Stein manifolds [?] – in the
case at hand this implies that there is no obstruction to an extension away from the surface
s+ t+ u = 4.8

The triple ⇢ expansion in equation (13) is the starting point for our numerical work. Our
approach is to restrict the expansion to a finite sum by imposing
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and which in practice allows us to eliminate many terms in (13) (in appendix B we explain
in detail which terms can be set to zero). The remaining freedom in our ansatz then consists
of the finitely many remaining ↵

abc

together with the bound state parameters; since this is a
finite-dimensional space we can use a computer to numerically explore the space of scattering
amplitudes. Of course we want to keep N

max

as large as possible. As we will see, in fortunate
cases the numerical results stabilize already for feasible values of N
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, and in other cases
we can extrapolate from the numerical results.

It will be the job of the computer to impose the unitarity constraints, which are quadratic
constraints in the parameters g2 and ↵
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. Rather than checking the infinity of constraints
for all s and `, we impose a cuto↵ and check that unitarity constraints are obeyed only for
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and along a grid of values for s. Experimentally we observe that our results remain
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Figure 1: Hyperbolic space in Poincaré coordinates (left) and global coordinates (right). Surfaces of
constant ⌧ correspond to hemispheres of radius

p
z2 + r2 = e⌧ in the right picture. The boundary

point B corresponds to ⌧ = �1 in global coordinates.

the boundary point B. We shall work in an eigenbasis of the Hamiltonian H that generates
global time translations or, equivalently, dilatations around the boundary point B. The
states can be organized into representations of the conformal group, which are labeled by
the scaling dimension � and the SO(d) irreducible representation of the primary state. For
example, for a scalar particle of mass m at rest in the center of AdS we have the familiar
relation �(� � d) = m2R2.

Bulk/Boundary Expansion. The boundary operators can be defined by pushing local
bulk operators towards the conformal boundary. More precisely, we can write a local bulk
operator �i as an infinite sum of boundary operators2,

�i(z, x) =
X

k

aik z
�k [Ok(x) + descendants] , (3)

where x 2 Rd is a cartesian coordinate on the flat conformal boundary and we organized
the sum into contributions from the primary operators Ok and its descendants. It is easy
to check that the action of the Killing vectors of hyperbolic space on the field � induces
the usual action of conformal generators on the primary operators Ok. The (bulk state)-
(boundary operator) map implies that this expansion has a finite radius of convergence inside
correlation functions.

Boundary Operator Product Expansion. The same state-operator map leads to a
convergent Operator Product Expansion (OPE) of the boundary operators

Oi(x)Oj(0) =
X

k

�ijk |x|�k��i��j [Ok(0) + descendants] . (4)

Conformal Theory. The conclusion from the above discussion is therefore that any
d + 1 dimensional QFT in AdSd+1

can be used to define a set of correlation functions that
behave like correlators of a d dimensional conformal theory (CT). We use this nomenclature
to highlight that the boundary correlation functions of the Oi’s do not define a conventional
full-fledged conformal field theory (CFT) simply due to the absence of operators like a stress
tensor or currents for global symmetries in their OPE. (We discuss what happens to the bulk

2We focus on scalar operators for simplicity.

5

z = e⌧ cos ⇢

r = e⌧ sin ⇢

hO(x) . . . i = lim
z!0

z

��
. . . h�(z, x) . . . i

Correlation functions of boundary operators

bulk	operator
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QFT stress tensor in appendix A.1.) In any instance, the axioms of a conformal theory, most
notably unitarity and the existence of a convergent OPE are all one needs to make use of
conformal bootstrap techniques.

Our setup di↵ers from the standard AdS/CFT correspondence. There, the existence of
a boundary stress tensor is well-known to correspond to the dynamical bulk metric. In this
paper we instead restrict ourselves to the study of QFT in a fixed AdS background geometry.
It might also be interesting to think about such QFTs as the limit of bulk graviational theories
where the Planck length was sent to zero. This means that the set of boundary correlators
we are studying can be thought of as a sector of the dual CFTd in the limit of infinite central
charge. See for instance [15] for a recent implementation of this idea.

3 The flat space limit

In hyperbolic space the radius of curvature R acts as a finite-volume regulator, and for very
large values of R we naturally expect to recover the physics of infinite-volume flat space. In
this section we discuss this limit in more detail. We will demonstrate that it translates into
particular scaling limits for the conformal theory described in the previous section. This
will lead us to formulate a precise dictionary between physical flat-space observables and CT
data which we will bootstrap in the following section.

The first element in this dictionary involves the masses in the flat space QFT and the
dimensions of the CT. As discussed above, a scalar particle of massmi in AdS can for example
be created by a boundary operator of dimension given by �i(�i � d) = m2

iR
2. Therefore,

by changing the AdS radius we smoothly vary the conformal dimensions of the CT. In this
way we obtain a one-parameter family of CTs. We are interested in the limit where the
the Compton wave length of the particle is much smaller than the AdS radius so that the
particle perceives its surrounding as flat space. So we are interested in taking miR ! 1 so
that all dimensions of the CT should be taken to infinity with their ratios held constant. In
this way we obtain the following simple relation between the dimensions of the operators of
the CT and the masses of the particles (measured in units of the lightest particle)

mi

m
1

= lim
�i!1

�i

�
1

. (5)

Notice that it su�ces to consider primary boundary operators: these correspond to parti-
cles at rest whereas descendant states become boosted particles in the flat-space limit. In
appendix A we discuss this limit in more detail, including the case where the QFT flows to a
non-trivial IR fixed point. This discussion highlights rather sharply the distinction between
a CFT – where we have at least an operator (the stress tensor) with small anomalous di-
mensions – and the CT’s under consideration – where all operators acquire a parametrically
large dimension – alluded to at the end of the last section.

The second element of the dictionary relates flat space scattering amplitudes and cor-
relation functions of the conformal theory. Here we propose two di↵erent relations for this
dictionary, each with its own advantages and limitations.
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(6) simplifies dramatically into a relation between the physical three-point couplings in flat
space (measured in units of the lowest mass m
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) and the OPE coe�cients of the boundary
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We can in fact re-derive this relation, independently of any Mellin transform, by con-
sidering the case of three weakly coupled scalar fields �i, 1 6 i 6 3, with a cubic vertex
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. The
scaling dimension �i of the boundary operators is related to the mass mi of the scalar field
�i via m2
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2 = �i(�i � d). The tree level boundary three-point function is given by the

Witten diagram shown in figure 2. This gives
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arises from normalizing the boundary operators to have unit two point function. On the
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where xij = |xi � xj| and �ij,k = �i +�j � �k. With our normalizations, this constant is
just the OPE coe�cient appearing in (4). The integral in (12) was computed already in [22].
By equating the result to (14) and taking the flat space limit corresponding to large external
dimensions, we precisely recover (11).

Finally let us quote here a particular example of the above relation which will be used
extensively in the bootstrap of section 4. Consider the coupling between two particles of
mass m

1

and third particle of mass m
2

= ↵m
1

. (So that in the CFT we have a correlator
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ĝ
123

�
1

�
2

�
3

in AdSd+1

. Notice that the coupling ĝ
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The first is most easily stated if we work in the Mellin representation [16, 17], whose
definition is recalled below. The claim is that the n-particle flat scattering space amplitude
can be directly extracted from the connected Mellin amplitude M(�ij) through the limit
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where a = n(d�1)/2�d�1 renders the expression dimensionless and where the normalization
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A similar flat space limit formula appeared before for the case of external massless particles
[18,19]. It would be interesting to understand better the relation between these two formulas.
In particular, the flat space limit formula for external massless particles involves an integral
which is not present in (6). We discuss further this relation, its derivation and its implications
in subsection 3.1.

We also found another relation between flat space scattering and the CT data. This
second relation yields an expression for the spin l phase shift �l(s) for a 2-to-2 S-matrix
element describing the scattering of a particle of mass m

1

against a particle of mass m
2

.
The relation is even more direct than the previous one but only holds for physical values
of the total energy in the center of mass frame
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where E/�
1

=
p
s/m

1

is the center of mass energy measured in units of the lightest particle
and �

�,l are the OPE coe�cients arising in the OPE of O
1

and O
2

. (The weight w is a
simple function of the CT spectra discussed in detail below and the bin size 1 ⌧ �E ⌧ E.)
We discuss further this relation, its derivation and its implications in subsection 3.2.

Let us already anticipate that our derivations of these relations contain some heuristic
elements and it would certainly be interesting to try to render them more rigorous. We
also did not rigorously establish the equivalence between these two formulas from a CT
perspective, although we show in appendix C.5 that formulas (8) and (6) give rise to the
same imaginary part of the flat space scattering amplitude.

In section 4 we are going to analyze the large dimensions conformal theories from a
bootstrap lens thus constraining the space of flat space massive quantum field theories. In
practice we will use (5) and a particular restriction of (6) to the three particle amplitude
where this formula simplifies dramatically, see e.g. (11) below. The reader curious about the
bootstrap details might prefer to take the flat space formulae on faith on a first reading and
jump directly to section 4.
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QFT stress tensor in appendix A.1.) In any instance, the axioms of a conformal theory, most
notably unitarity and the existence of a convergent OPE are all one needs to make use of
conformal bootstrap techniques.

Our setup di↵ers from the standard AdS/CFT correspondence. There, the existence of
a boundary stress tensor is well-known to correspond to the dynamical bulk metric. In this
paper we instead restrict ourselves to the study of QFT in a fixed AdS background geometry.
It might also be interesting to think about such QFTs as the limit of bulk graviational theories
where the Planck length was sent to zero. This means that the set of boundary correlators
we are studying can be thought of as a sector of the dual CFTd in the limit of infinite central
charge. See for instance [15] for a recent implementation of this idea.

3 The flat space limit

In hyperbolic space the radius of curvature R acts as a finite-volume regulator, and for very
large values of R we naturally expect to recover the physics of infinite-volume flat space. In
this section we discuss this limit in more detail. We will demonstrate that it translates into
particular scaling limits for the conformal theory described in the previous section. This
will lead us to formulate a precise dictionary between physical flat-space observables and CT
data which we will bootstrap in the following section.

The first element in this dictionary involves the masses in the flat space QFT and the
dimensions of the CT. As discussed above, a scalar particle of massmi in AdS can for example
be created by a boundary operator of dimension given by �i(�i � d) = m2

iR
2. Therefore,

by changing the AdS radius we smoothly vary the conformal dimensions of the CT. In this
way we obtain a one-parameter family of CTs. We are interested in the limit where the
the Compton wave length of the particle is much smaller than the AdS radius so that the
particle perceives its surrounding as flat space. So we are interested in taking miR ! 1 so
that all dimensions of the CT should be taken to infinity with their ratios held constant. In
this way we obtain the following simple relation between the dimensions of the operators of
the CT and the masses of the particles (measured in units of the lightest particle)
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Notice that it su�ces to consider primary boundary operators: these correspond to parti-
cles at rest whereas descendant states become boosted particles in the flat-space limit. In
appendix A we discuss this limit in more detail, including the case where the QFT flows to a
non-trivial IR fixed point. This discussion highlights rather sharply the distinction between
a CFT – where we have at least an operator (the stress tensor) with small anomalous di-
mensions – and the CT’s under consideration – where all operators acquire a parametrically
large dimension – alluded to at the end of the last section.

The second element of the dictionary relates flat space scattering amplitudes and cor-
relation functions of the conformal theory. Here we propose two di↵erent relations for this
dictionary, each with its own advantages and limitations.
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We can in fact re-derive this relation, independently of any Mellin transform, by con-
sidering the case of three weakly coupled scalar fields �i, 1 6 i 6 3, with a cubic vertex
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just the OPE coe�cient appearing in (4). The integral in (12) was computed already in [22].
By equating the result to (14) and taking the flat space limit corresponding to large external
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where xij = |xi � xj| and �ij,k = �i +�j � �k. With our normalizations, this constant is
just the OPE coe�cient appearing in (4). The integral in (12) was computed already in [22].
By equating the result to (14) and taking the flat space limit corresponding to large external
dimensions, we precisely recover (11).

Finally let us quote here a particular example of the above relation which will be used
extensively in the bootstrap of section 4. Consider the coupling between two particles of
mass m
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and third particle of mass m
2

= ↵m
1

. (So that in the CFT we have a correlator

9

Cubic couplings: OPE	coefficient



Numerical	Conformal	Bootstrap

m
1

2m
1

mb

g
111

m
2

g
112

I II

Figure 4: In scenario I we vary m
2

and find an upper bound on g
112

. In scenario II we vary mb and
find an upper bound on g

111

. In both scenarios the mass of the scattered particle is m
1

.

of an operator O
1

with dimension such that �
1

(�
1

�d) = m2

1

. We will submit this four-point
function to a numerical analysis in two following scenarios, displayed in figure 4.4

• In scenario I we assume that the S-matrix has a single pole corresponding to a particle
with mass m

2

and then is analytic all the way up to the two-particle continuum at
2m

1

. This scenario translates into a CT with an OPE of the form:

scenario I: O
1

⇥ O
1

= 1 + �
112

O
2

+ . . . (operators with � > 2�
1

) . . . (28)

with �i(�i � d) = m2

i . The squared OPE coe�cient �2

112

corresponds via equation
(11) to the residue at the pole, which we denote as g2

112

. We will be able to obtain an
upper bound on this coe�cient as a function of the dimensionless mass ratio m

2

/m
1

.5

The physical intuition behind this scenario is that the exchanged particle with mass m
2

mediates an attractive force between the particles of mass m
1

with a strength that is
parametrized by g2

112

. If this interaction would be very strong then we would expect a
bound state to form, which would manifest itself as an additional pole in the S-matrix
and an operator of dimension �

2

< 2�
1

in the CT. Since we assume that such a state
is absent, we have the right to expect an upper bound on g2

112

.

• In scenario II we assume instead that the S-matrix has a pole with residue g2
111

that
corresponds to a self-coupling of the scattered particle, and then no other poles up to
a certain threshold which we will call mb. In the CT language this becomes

scenario II: O
1

⇥ O
1

= 1 + �
111

O
1

+ . . . (operators with � > �b) . . . (29)

4In our companion paper [13] we use a slightly di↵erent notation: m
1

here becomes m there, and m
2

and
mb here become m

1

there.
5Notice that for m

2

6= m
1

we assume in particular that the three-point coupling g
111

= 0. In realistic
theories this might be due to a symmetry, but we do not have to commit to any specific underlying mechanism.
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with the same translations to flat-space quantities as before. We will again obtain an
upper bound on the residue g2

111

, now as a function of the dimensionless ratio mb/m1

.
In this case we can heuristically think of mb as the mass of a bound state of two m

1

particles. Since the binding strength is once more parametrized by the resiude g2
111

, we
now not only expect to find an upper bound on g2

111

but also that it will decrease as
we increase mb/m1

. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point
when m

2

= mb/2 = m
1

.

In order to obtain the desired upper bounds on the squared OPE coe�cients �2

11... we
made use of the well-established numerical bootstrap algorithms [3]. The basic idea is always
to start with the conformal block decomposition of the four-point function, which in one
dimension takes the form:

hO
1

(0)O
1

(z)O
1

(1)O
1

(1)i = 1

z2�1

X

k

�2

11kG�k
(z) , (30)

with
G

�k
(z) := z�k

2

F
1

(�k,�k, 2�k, z) , (31)

and with z = (x
12

x
34

)/(x
13

x
24

) the only independent cross-ratio. Since all four operators are
identical the four-point function obeys the crossing symmetry equation

X

k

�2

11k

✓
1

z2�1
G

�k
(z) � (z ! 1 � z)

◆
= 0 (32)

Following standard procedures, we act on this equation with a linear functional ↵. By
linearity we obtain:

X

k

�2

11k ↵ ·


1

z2�1
G

�k
(z) � (z ! 1 � z)

�
= 0 (33)

Since the �2

11k are positive, it is possible to find functionals which lead to impossibilities
under certain assumptions for the structure constants and/or the spectrum. This in turn
allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for ↵, namely

↵ · [f(z)] := ↵
1

f 0(1/2) + ↵
2

f 00(1/2) + · · · + ↵Nf
(N)(1/2) . (34)

The even derivatives vanish identically in (33) so the finitely many real numbers ↵
2i�1

,
i 2 1, 2, . . . , b(N + 1)/2c completely parametrize our functional. As N increases the class
of functionals we work with becomes more general and the bounds get better. Of course,
searching for functionals for larger values of N also requires greater computational resources.
As indicated in the various plots below, our results were obtained with N . 200 for scenario
I and with N . 300 scenario II.

The specific algorithm to constrain OPE coe�cients was first introduced in [5]. Cur-
rent state-of-the-art methods have been encoded in specialized software packages like Juli-
BootS [28] and SDPB [29], both of which were used to obtain the results discussed below. For
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with the same translations to flat-space quantities as before. We will again obtain an
upper bound on the residue g2

111

, now as a function of the dimensionless ratio mb/m1

.
In this case we can heuristically think of mb as the mass of a bound state of two m

1

particles. Since the binding strength is once more parametrized by the resiude g2
111

, we
now not only expect to find an upper bound on g2

111

but also that it will decrease as
we increase mb/m1

. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point
when m

2

= mb/2 = m
1

.

In order to obtain the desired upper bounds on the squared OPE coe�cients �2

11... we
made use of the well-established numerical bootstrap algorithms [3]. The basic idea is always
to start with the conformal block decomposition of the four-point function, which in one
dimension takes the form:
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11kG�k
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with
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(z) := z�k
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F
1

(�k,�k, 2�k, z) , (31)

and with z = (x
12

x
34

)/(x
13

x
24

) the only independent cross-ratio. Since all four operators are
identical the four-point function obeys the crossing symmetry equation
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(z) � (z ! 1 � z)
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= 0 (32)

Following standard procedures, we act on this equation with a linear functional ↵. By
linearity we obtain:

X

k

�2

11k ↵ ·


1

z2�1
G

�k
(z) � (z ! 1 � z)

�
= 0 (33)

Since the �2

11k are positive, it is possible to find functionals which lead to impossibilities
under certain assumptions for the structure constants and/or the spectrum. This in turn
allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for ↵, namely

↵ · [f(z)] := ↵
1

f 0(1/2) + ↵
2

f 00(1/2) + · · · + ↵Nf
(N)(1/2) . (34)

The even derivatives vanish identically in (33) so the finitely many real numbers ↵
2i�1

,
i 2 1, 2, . . . , b(N + 1)/2c completely parametrize our functional. As N increases the class
of functionals we work with becomes more general and the bounds get better. Of course,
searching for functionals for larger values of N also requires greater computational resources.
As indicated in the various plots below, our results were obtained with N . 200 for scenario
I and with N . 300 scenario II.

The specific algorithm to constrain OPE coe�cients was first introduced in [5]. Cur-
rent state-of-the-art methods have been encoded in specialized software packages like Juli-
BootS [28] and SDPB [29], both of which were used to obtain the results discussed below. For

15

with the same translations to flat-space quantities as before. We will again obtain an
upper bound on the residue g2

111

, now as a function of the dimensionless ratio mb/m1

.
In this case we can heuristically think of mb as the mass of a bound state of two m

1

particles. Since the binding strength is once more parametrized by the resiude g2
111

, we
now not only expect to find an upper bound on g2

111

but also that it will decrease as
we increase mb/m1

. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point
when m

2

= mb/2 = m
1

.

In order to obtain the desired upper bounds on the squared OPE coe�cients �2

11... we
made use of the well-established numerical bootstrap algorithms [3]. The basic idea is always
to start with the conformal block decomposition of the four-point function, which in one
dimension takes the form:

hO
1

(0)O
1

(z)O
1

(1)O
1

(1)i = 1

z2�1

X

k

�2

11kG�k
(z) , (30)

with
G

�k
(z) := z�k

2

F
1

(�k,�k, 2�k, z) , (31)

and with z = (x
12

x
34

)/(x
13

x
24

) the only independent cross-ratio. Since all four operators are
identical the four-point function obeys the crossing symmetry equation

X

k

�2

11k

✓
1

z2�1
G

�k
(z) � (z ! 1 � z)

◆
= 0 (32)

Following standard procedures, we act on this equation with a linear functional ↵. By
linearity we obtain:

X

k

�2

11k ↵ ·


1

z2�1
G

�k
(z) � (z ! 1 � z)

�
= 0 (33)

Since the �2

11k are positive, it is possible to find functionals which lead to impossibilities
under certain assumptions for the structure constants and/or the spectrum. This in turn
allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for ↵, namely

↵ · [f(z)] := ↵
1

f 0(1/2) + ↵
2

f 00(1/2) + · · · + ↵Nf
(N)(1/2) . (34)

The even derivatives vanish identically in (33) so the finitely many real numbers ↵
2i�1

,
i 2 1, 2, . . . , b(N + 1)/2c completely parametrize our functional. As N increases the class
of functionals we work with becomes more general and the bounds get better. Of course,
searching for functionals for larger values of N also requires greater computational resources.
As indicated in the various plots below, our results were obtained with N . 200 for scenario
I and with N . 300 scenario II.

The specific algorithm to constrain OPE coe�cients was first introduced in [5]. Cur-
rent state-of-the-art methods have been encoded in specialized software packages like Juli-
BootS [28] and SDPB [29], both of which were used to obtain the results discussed below. For

15

conformal	block

0

�1

2�1

�2



Numerical	Conformal	Bootstrap

m
1

2m
1

mb

g
111

m
2

g
112

I II

Figure 4: In scenario I we vary m
2

and find an upper bound on g
112

. In scenario II we vary mb and
find an upper bound on g

111

. In both scenarios the mass of the scattered particle is m
1

.

of an operator O
1

with dimension such that �
1

(�
1

�d) = m2

1

. We will submit this four-point
function to a numerical analysis in two following scenarios, displayed in figure 4.4

• In scenario I we assume that the S-matrix has a single pole corresponding to a particle
with mass m

2

and then is analytic all the way up to the two-particle continuum at
2m

1

. This scenario translates into a CT with an OPE of the form:

scenario I: O
1

⇥ O
1

= 1 + �
112

O
2

+ . . . (operators with � > 2�
1

) . . . (28)

with �i(�i � d) = m2

i . The squared OPE coe�cient �2

112

corresponds via equation
(11) to the residue at the pole, which we denote as g2

112

. We will be able to obtain an
upper bound on this coe�cient as a function of the dimensionless mass ratio m

2

/m
1

.5

The physical intuition behind this scenario is that the exchanged particle with mass m
2

mediates an attractive force between the particles of mass m
1

with a strength that is
parametrized by g2

112

. If this interaction would be very strong then we would expect a
bound state to form, which would manifest itself as an additional pole in the S-matrix
and an operator of dimension �

2

< 2�
1

in the CT. Since we assume that such a state
is absent, we have the right to expect an upper bound on g2

112

.

• In scenario II we assume instead that the S-matrix has a pole with residue g2
111

that
corresponds to a self-coupling of the scattered particle, and then no other poles up to
a certain threshold which we will call mb. In the CT language this becomes

scenario II: O
1

⇥ O
1

= 1 + �
111

O
1

+ . . . (operators with � > �b) . . . (29)

4In our companion paper [13] we use a slightly di↵erent notation: m
1

here becomes m there, and m
2

and
mb here become m

1

there.
5Notice that for m

2

6= m
1

we assume in particular that the three-point coupling g
111

= 0. In realistic
theories this might be due to a symmetry, but we do not have to commit to any specific underlying mechanism.

14

with the same translations to flat-space quantities as before. We will again obtain an
upper bound on the residue g2

111

, now as a function of the dimensionless ratio mb/m1

.
In this case we can heuristically think of mb as the mass of a bound state of two m

1

particles. Since the binding strength is once more parametrized by the resiude g2
111

, we
now not only expect to find an upper bound on g2

111

but also that it will decrease as
we increase mb/m1

. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point
when m

2

= mb/2 = m
1

.

In order to obtain the desired upper bounds on the squared OPE coe�cients �2

11... we
made use of the well-established numerical bootstrap algorithms [3]. The basic idea is always
to start with the conformal block decomposition of the four-point function, which in one
dimension takes the form:

hO
1

(0)O
1

(z)O
1

(1)O
1

(1)i = 1

z2�1

X

k

�2

11kG�k
(z) , (30)

with
G

�k
(z) := z�k

2

F
1

(�k,�k, 2�k, z) , (31)

and with z = (x
12

x
34

)/(x
13

x
24

) the only independent cross-ratio. Since all four operators are
identical the four-point function obeys the crossing symmetry equation

X

k

�2

11k

✓
1

z2�1
G

�k
(z) � (z ! 1 � z)

◆
= 0 (32)

Following standard procedures, we act on this equation with a linear functional ↵. By
linearity we obtain:

X

k

�2

11k ↵ ·


1

z2�1
G

�k
(z) � (z ! 1 � z)

�
= 0 (33)

Since the �2

11k are positive, it is possible to find functionals which lead to impossibilities
under certain assumptions for the structure constants and/or the spectrum. This in turn
allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for ↵, namely

↵ · [f(z)] := ↵
1

f 0(1/2) + ↵
2

f 00(1/2) + · · · + ↵Nf
(N)(1/2) . (34)

The even derivatives vanish identically in (33) so the finitely many real numbers ↵
2i�1

,
i 2 1, 2, . . . , b(N + 1)/2c completely parametrize our functional. As N increases the class
of functionals we work with becomes more general and the bounds get better. Of course,
searching for functionals for larger values of N also requires greater computational resources.
As indicated in the various plots below, our results were obtained with N . 200 for scenario
I and with N . 300 scenario II.

The specific algorithm to constrain OPE coe�cients was first introduced in [5]. Cur-
rent state-of-the-art methods have been encoded in specialized software packages like Juli-
BootS [28] and SDPB [29], both of which were used to obtain the results discussed below. For

15

with the same translations to flat-space quantities as before. We will again obtain an
upper bound on the residue g2

111

, now as a function of the dimensionless ratio mb/m1

.
In this case we can heuristically think of mb as the mass of a bound state of two m

1

particles. Since the binding strength is once more parametrized by the resiude g2
111

, we
now not only expect to find an upper bound on g2

111

but also that it will decrease as
we increase mb/m1

. This intuition will be borne out below.

The attentive reader will have noticed that scenarios I and II coincide at the single point
when m

2

= mb/2 = m
1

.

In order to obtain the desired upper bounds on the squared OPE coe�cients �2

11... we
made use of the well-established numerical bootstrap algorithms [3]. The basic idea is always
to start with the conformal block decomposition of the four-point function, which in one
dimension takes the form:

hO
1

(0)O
1

(z)O
1

(1)O
1

(1)i = 1

z2�1

X

k

�2

11kG�k
(z) , (30)

with
G

�k
(z) := z�k

2

F
1

(�k,�k, 2�k, z) , (31)

and with z = (x
12

x
34

)/(x
13

x
24

) the only independent cross-ratio. Since all four operators are
identical the four-point function obeys the crossing symmetry equation

X

k

�2

11k

✓
1

z2�1
G

�k
(z) � (z ! 1 � z)

◆
= 0 (32)

Following standard procedures, we act on this equation with a linear functional ↵. By
linearity we obtain:

X

k

�2

11k ↵ ·


1

z2�1
G

�k
(z) � (z ! 1 � z)

�
= 0 (33)

Since the �2

11k are positive, it is possible to find functionals which lead to impossibilities
under certain assumptions for the structure constants and/or the spectrum. This in turn
allows one to rule out such assumptions and thereby establish rigorous bounds.

For our numerical investigations we adopted the conventional form for ↵, namely

↵ · [f(z)] := ↵
1

f 0(1/2) + ↵
2

f 00(1/2) + · · · + ↵Nf
(N)(1/2) . (34)

The even derivatives vanish identically in (33) so the finitely many real numbers ↵
2i�1

,
i 2 1, 2, . . . , b(N + 1)/2c completely parametrize our functional. As N increases the class
of functionals we work with becomes more general and the bounds get better. Of course,
searching for functionals for larger values of N also requires greater computational resources.
As indicated in the various plots below, our results were obtained with N . 200 for scenario
I and with N . 300 scenario II.

The specific algorithm to constrain OPE coe�cients was first introduced in [5]. Cur-
rent state-of-the-art methods have been encoded in specialized software packages like Juli-
BootS [28] and SDPB [29], both of which were used to obtain the results discussed below. For

15

conformal	block

0

�1

2�1

�2

Figure 5: Numerical bounds for scenario I in the specific case with �
2

= 1.2�
1

. The orange line
is the extrapolation of the numerical results to N = 1 and for large �

1

it accurately matches the
expected flat-space slope as indicated by the dashed line.

the high-precision results of scenario II we also made essential use of the ‘flow’ method dis-
cussed recently in [30].6 Notice that the flat-space limit dictates that our main interest is the
behavior of the numerical bounds as � ! 1, which is very di↵erent from the usual searches
where � is usually O(1). For large � the numerical bootstrap analysis is unfortunately less
e�cient, as evidenced both by our numerical results and the � � N2 analysis in appendix
D. We will therefore resort to an extrapolation procedure that we explain below.

4.2 Results for scenario I

We need to perform various extrapolations of our numerical results to obtain a physically
relevant answer. We will therefore begin by explaining this procedure using figures 5 and 6;
our final result is shown in figure 7.

Let us begin with the blue data in figure 5, which are our ‘bare’ results for the specific
representative case with �

2

= 1.2�
1

. Di↵erent lines correspond to di↵erent computational
complexity as parametrized by N . It is clear that our bounds still heavily depend on N ,
especially for large �

1

. In order to get physically interesting results we therefore extrapolate
the bounds to N = 1, using a degree eight polynomial in N�1. The result of such an
extrapolation is represented by the larger orange points; this is our prediction for the upper
bound that we would have obtained with infinite computational resources.7

The next step is to translate the upper bound on �2

112

to an upper bound on the flat-
space coupling g2

112

using the results of the previous sections. For the plotted data we can

6Full details of the numerical implementations are available from the authors upon request.
7As cross-checks on the extrapolation procedure, we have checked that extrapolation using smaller values

of N can reproduce the results of higher values, and also that the final answer does not sensitively depend
on the degree of extrapolation or which exact values of N one includes.
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Extrapolation2

Figure 6: Visualization of the double extrapolation procedure. Blue dots: some of our raw data
points; each column of points corresponds to a series obtained with increasing N . Orange dots:
extrapolation to N = 1. Orange lines: fits and extrapolations to infinite �. Similar extrapolations
from data not shown lead to the series of red dots at the back surface. These constitute our
main result and are shown independently in figure 7. Black line: exact result from the S-matrix
bootstrap [13] which tracks our numerical result.

use equation (15) with ↵ = 1.2 = 6/5. To leading order this results in

log(g2
112

) = log(�2

112

) + 2�
1

log(25/16) +O(log(�
1

)) . (35)

The dashed line in figure 5 is a least-squares fit to the orange data of a straight line with
slope �2�

1

log(25/16). The good fit is our first indication of success and puts us in an
excellent position to extract an upper bound on g2

112

for the flat-space S-matrix. We note
that the results for other values of the ratio �

2

/�
1

show very similar behavior.

The true flat-space bound is then obtained by a further extrapolation to large �
1

as
visualized in figure 6. Although we have obtained bare data for 19 di↵erent ratios of �

2

/�
1

,
for clarity of presentation we have chosen to show only the bare data for �

2

/�
1

equal to 3/5,
6/5 and 9/5. Compared to figure 5 we have also translated the vertical axis from log(�2

112

)
to log(g2

112

) using (11), so the orange extrapolations are now approximately constant rather
than sloping down. We fitted this rescaled data with a quadratic polynomial in ��1 to
obtain the red points projected on the back surface. These constitute our final result, i.e.,
the red data points should be true upper bounds for g2

112

in any flat-space S-matrix. Figure
7 shows the same results more clearly.

Our data points in figure 7 are in good agreement with the black curve corresponding to
the function

(gmax

112

)2 =
4 (µ2(4 � µ2))3/2

|µ2 � 2| , µ = m
2

/m
1

. (36)
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Open	questions



Future	work

• Bootstrap multiple amplitudes 

• Anomalous thresholds (Landau diagrams)

• Particles with spin (internal and external)

• Particles with flavour (global symmetries)

• Use analyticity beyond the physical sheet

• Connect with conformal bootstrap for D>2

• Other interesting questions? Maximize particle production?

• Can we input UV data about the QFT? Hard scattering?



Thank	you!
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Figure 12: Blow up of region B from figure 11. The thick black line is where the cubic fusion
property (20) holds (i.e. assumption (1) in the discussion of section 3). In the upper right corner
we plot the s-channel poles of S

12

versus those of S. We see that, following the thick black line,
only at the blue dot does S

12

have poles at the same locations as S indicating that assumption (3)
from section 3 also holds.

We will now argue that in the region (17) of parameter space our bound should not be
the strongest possible bound except at a single isolated point which we will identify with a
well known and very interesting field theory.11 We will do this by observing some simple
pathologies with (18) which are resolved once ↵

2

and ↵
3

take some particular values which
we identify below.

To proceed we need to make three natural assumptions about a putative theory living in
the boundary of our bounds for a fixed mass spectrum M:

A1 The theory is integrable.12

11The reader fond of section titles probably guessed which one.
12This is of course very natural since the S-matrices we found saturate unitarity and thus admit no particle
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2D	Conformal	bootstrap	-	preliminary

QFT in AdS - results

Preliminary result for three dimensions:

The good news: an interesting feature!

The not so good news: questionable convergence in flat-space limit.



RG	flows	from	QFT	in	AdS
QFT in AdS - generalities

RG flows lead to one-parameter families of “conformal theories”:

We are ultimately interested in the flat-space limit for gapped theories:

R ! 1, m

2

i fixed, �i ⇠ miR ! 1 .


