S-matrix Bootstrap revisited

S-matrix Bootstrap I: QFT in AdS [arXiv:1607.06109] S-matrix Bootstrap II: two-dimensional amplitudes [arXiv:1607.06110] S-matrix Bootstrap III: higher dimensional amplitudes [to appear]

with M. Paulos, J. Toledo, B. Van Rees, P. Vieira

Strings 2017, Tel Aviv, 29th of June, 2017

Motivation

Bootstrap Philosophy: bound the space of theories by imposing consistency conditions on physical observables.

Goal: extend recent success in CFT to massive QFT.

Outline

- S-matrix Bootstrap in D=2
- S-matrix Bootstrap in D>2
- S-matrix from Conformal Bootstrap
- Open questions

S-matrix Bootstrap in 2D QFT

$$k_i^2 = m^2$$

$$s \equiv (k_1 + k_2)^2$$

$$t \equiv (k_2 - k_3)^2 = 4m^2 - s$$

$$u \equiv (k_3 - k_1)^2 = 0$$

$$k_i^2 = m^2$$

$$s \equiv (k_1 + k_2)^2$$

$$t \equiv (k_2 - k_3)^2 = 4m^2 - s$$

$$u \equiv (k_3 - k_1)^2 = 0$$

Crossing symmetry: $S(s) = S(4m^2 - s)$

$$k_i^2 = m^2$$

$$s \equiv (k_1 + k_2)^2$$

$$t \equiv (k_2 - k_3)^2 = 4m^2 - s$$

$$u \equiv (k_3 - k_1)^2 = 0$$

Crossing symmetry: $S(s) = S(4m^2 - s)$ Analyticity follows from mass spectrum.

 $\begin{bmatrix} 2m \\ m_b \\ m_b \\ 0 \end{bmatrix}$

$$k_i^2 = m^2$$

$$s \equiv (k_1 + k_2)^2$$

$$t \equiv (k_2 - k_3)^2 = 4m^2 - s$$

$$u \equiv (k_3 - k_1)^2 = 0$$

Crossing symmetry: $S(s) = S(4m^2 - s)$ Analyticity follows from mass spectrum.

Crossing: $S(s) = S(4m^2 - s)$ Analyticity: $S(s^*) = [S(s)]^*$

Unitarity: $|S(s)|^2 \le 1$, $s > 4m^2$.

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad [Creutz '72] \quad (CDD factor)$$
Pole at $s = m_b^2 > 2$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv \begin{bmatrix} m_b \end{bmatrix} (s) \quad \text{[Creutz '72]} \quad \text{CDD factor} \\ \text{CDD factor} \\ \text{[Castillejo, Dalitz, Dyson]} \quad \text{[Castillejo, Dalitz, Dyson]}$$

No particle production
$$|S_{opt}(s)|^2 = 1$$
, $s > 4m^2$.

Proof:

$$h(s) \equiv \frac{S(s)}{[m_b](s)}$$

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]} \quad \text{[Creutz '72]} \quad \text{[Creutz '72]} \quad \text{[Castillejo, Dalitz, Dyson]}$$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

Proof: $h(s) \equiv \frac{S(s)}{[m_b](s)} \implies \begin{array}{l} h(s) \text{ analytic in the plane minus the cut} \\ |h(s)| \leq 1 \quad \text{bounded at all boundaries} \end{array}$

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]} \quad \text{[Creutz '72]} \quad \text{[Creutz '72]} \quad \text{[Castillejo, Dalitz, Dyson]}$$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

Maximum cubic coupling

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}}$$

Maximum cubic coupling

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}}$$

Crossing symmetry and analyticity are automatic. Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

Ansatz:

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0} c_{(ab)} \rho_s^a \rho_t^b$$

Crossing symmetry and analyticity are automatic. Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

Ansatz:

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0} c_{(ab)} \rho_s^a \rho_t^b$$

Crossing symmetry and analyticity are automatic. Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

[Simmons-Duffin '15]

Use semidefinite programming (SDPB) to maximize g_b^2 subject to these constraints. This reproduces the analytic solution as $N_{\max} \to \infty$

S-matrix Bootstrap in d+1 QFT

 $\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$

 $\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

 $\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = \mathbb{1} + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Partial waves:

$$S_{\ell}(s) = 1 + i \frac{(s - 4m^2)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} dx (1 - x^2)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) T(s, t, u) \Big|_{\substack{t \to -\frac{1-x}{2}(s - 4m^2)\\u \to -\frac{1+x}{2}(s - 4m^2)}}$$

Gegenbauer polynomial

Unitarity: $|S_{\ell}(s)|^2 \le 1$, $s > 4m^2$, $\ell = 0, 2, 4, ...$

 $\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = \mathbb{1} + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Partial waves:

$$S_{\ell}(s) = 1 + i \frac{(s - 4m^2)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} dx (1 - x^2)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) T(s, t, u) \Big|_{\substack{t \to -\frac{1-x}{2}(s - 4m^2)\\u \to -\frac{1+x}{2}(s - 4m^2)}}$$

Unitarity:
$$|S_{\ell}(s)|^2 \le 1$$
, $s > 4m^2$, $\ell = 0, 2, 4, \dots \ell_{\max}$

 \Rightarrow Quadratic constraints on the variables $\{g_b^2, \alpha_{(abc)}\}$

 $a+b+c \le N_{\max}$

Gegenbauer polynomial

Maximal cubic coupling in 3+1 QFT

Ansatz with no poles. Maximize $\lambda = \frac{1}{32\pi}T(s = t = u = \frac{4}{3}m^2)$ (e.g. $\pi^0\pi^0 \to \pi^0\pi^0$)

Ansatz with no poles. Maximize $\lambda = \frac{1}{32\pi}T(s = t = u = \frac{4}{3}m^2)$ (e.g. $\pi^0\pi^0 \to \pi^0\pi^0$)

Improved ansatz with threshold bound state:

$$T(s,t,u) = \beta \left(\frac{1}{\rho_s - 1} + \frac{1}{\rho_t - 1} + \frac{1}{\rho_u - 1} \right) + \sum_{\substack{a,b,c=0\\a+b+c \le N_{\max}}} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Improved ansatz with threshold bound state:

No particle production?

S-matrix from the Conformal Bootstrap

Correlation functions of boundary operators

$$\langle \mathcal{O}(x) \dots \rangle = \lim_{z \to 0} z^{-\Delta} \dots \langle \phi(z, x) \dots \rangle$$

bulk operator

Correlation functions of boundary operators

$$\langle \mathcal{O}(x) \dots \rangle = \lim_{z \to 0} z^{-\Delta} \dots \langle \phi(z, x) \dots \rangle$$

bulk operator

Isometry group of AdS = SO(d+1,1) = Conformal group

Correlation functions of boundary operators

$$\langle \mathcal{O}(x) \dots \rangle = \lim_{z \to 0} z^{-\Delta} \dots \langle \phi(z, x) \dots \rangle$$

bulk operator

Isometry group of AdS = SO(d+1,1) = Conformal group

Convergent OPE for boundary operators

Correlation functions of boundary operators

$$\langle \mathcal{O}(x) \dots \rangle = \lim_{z \to 0} z^{-\Delta} \dots \langle \phi(z, x) \dots \rangle$$

bulk operator

Isometry group of AdS = SO(d+1,1) = Conformal group

Convergent OPE for boundary operators

 \Rightarrow Use conformal bootstrap to study $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$

AdS radius $R \to \infty$

AdS radius $\,R \to \infty$

Mass spectrum: $\Delta_i \sim m_i R$

AdS radius $\,R \to \infty$

AdS radius $R \to \infty$

Scattering amplitudes: $(m_1)^a T(k_i) = \lim_{\Delta_i \to \infty} \frac{(\Delta_1)^a}{\mathcal{N}} \mathcal{M} \left(\gamma_{ij} = \frac{\Delta_i \Delta_j}{\Delta_1 + \dots + \Delta_n} \left(1 + \frac{k_i \cdot k_j}{m_i m_j} \right) \right)$ $a = n(d-1)/2 - d - 1 \qquad \mathcal{N} = \frac{1}{2} \pi^{\frac{d}{2}} \Gamma \left(\frac{\sum \Delta_i - d}{2} \right) \prod_{i=1}^n \frac{\sqrt{\mathcal{C}_{\Delta_i}}}{\Gamma(\Delta_i)}, \qquad \mathcal{C}_\Delta \equiv \frac{\Gamma(\Delta)}{2\pi^{\frac{d}{2}} \Gamma \left(\Delta - \frac{d}{2} + 1\right)}.$

$\mathcal{O}_1 \times \mathcal{O}_1 = 1 + \lambda_{112}\mathcal{O}_2 + \dots$ (operators with $\Delta > 2\Delta_1$)...

$\mathcal{O}_1 \times \mathcal{O}_1 = 1 + \lambda_{112}\mathcal{O}_2 + \dots$ (operators with $\Delta > 2\Delta_1$)...

$$\langle \mathcal{O}_1(0)\mathcal{O}_1(z)\mathcal{O}_1(1)\mathcal{O}_1(\infty)\rangle = \frac{1}{z^{2\Delta_1}}\sum_k \lambda_{11k}^2 G_{\Delta_k}(z)$$

 $\mathcal{O}_{1} \times \mathcal{O}_{1} = 1 + \lambda_{112}\mathcal{O}_{2} + \dots \text{ (operators with } \Delta > 2\Delta_{1})\dots$ $\langle \mathcal{O}_{1}(0)\mathcal{O}_{1}(z)\mathcal{O}_{1}(1)\mathcal{O}_{1}(\infty) \rangle = \frac{1}{z^{2\Delta_{1}}} \sum_{k} \lambda_{11k}^{2} G_{\Delta_{k}}(z) \qquad \text{conformal block}$ $G_{\Delta_{k}}(z) \coloneqq z^{\Delta_{k}} F_{1}(\Delta_{k}, \Delta_{k}, 2\Delta_{k}, z)$

Extrapolation²

Extrapolation²

Open questions

Future work

- Bootstrap multiple amplitudes
- Anomalous thresholds (Landau diagrams)
- Particles with spin (internal and external)
- Particles with flavour (global symmetries)
- Use analyticity beyond the physical sheet
- Connect with conformal bootstrap for D>2
- Other interesting questions? Maximize particle production?
- Can we input UV data about the QFT? Hard scattering?

Thank you!

2D Conformal bootstrap - preliminary

RG flows from QFT in AdS

