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N=4 super-Yang-Mills:  
toy model for 4D field theory and AdS gravity

remains rich&intricate: laboratory for new tools

this talk:  supergravity limit.  
study correlators dual to KK modes on AdS5xS5.
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planar integrability; localization; perturbation theory,…

beyond planar limit
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Abstract: We give an explicit superspace propagator for the chiral scalar field strength

of 10D IIB supergravity on an AdS5×S5 background. Because this space is conformally

flat, the propagator is very simple, almost identical to that of flat space. We also give an

explicit expansion over the Kaluza-Klein modes of S5. The fact that the full propagator

is so much simpler suggests that, as in 2D conformal field theory, AdS/CFT calculations

would be simpler without a mode expansion.
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We’ll fulfill this dream for four-point correlators
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Recipe:

1. Take correlator of lowest KK-mode (four axidilatons)

2. Uplift all distances to 10D

h0|���̄�̄|0i = G(u, v)

x4
12x

4
34 u =

x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
14

x2
13x

2
24

[D’Hoker, Freedman, Mathur,  
Matusis& Rastelli ’99;  

Claim: this gives all KK mode correlators!

x2
ij 7! (xi � xj)

2 + (yi � yj)
2



• Calculation technique

• Result:  10D IIB sugra ≃ CFT [for some tree correlators]

• Generalizations

 5

Outline
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[cf Zvi Bern’s talk]
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Generalized Unitarity Cuts  

  

By correlating gluon helicities, removing dilaton is trivial.  

Problem of computing the generalized cuts in gravity is reduced  
to multiplying and summing gauge-theory tree amplitudes.   

h�
µ⌫ ! A�

µA
�
µ h+

µ⌫ ! A+
µA

+
µ A+

µA
�
µForbid: 

Primary means of construction uses BCJ in D dimensions, but KLT with helicty 
should have better scaling at higher loops and gives compact expressions. 

2nd post-Minkowkian order 

on shell

Supergravity Feynman rules are hard.

break correlators into physical CFT building blocks
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Generalized Unitarity Cuts  

  

By correlating gluon helicities, removing dilaton is trivial.  

Problem of computing the generalized cuts in gravity is reduced  
to multiplying and summing gauge-theory tree amplitudes.   

h�
µ⌫ ! A�

µA
�
µ h+

µ⌫ ! A+
µA

+
µ A+

µA
�
µForbid: 

Primary means of construction uses BCJ in D dimensions, but KLT with helicty 
should have better scaling at higher loops and gives compact expressions. 

2nd post-Minkowkian order 

Work in CFT

Supergravity Feynman rules are hard.

break correlators into physical CFT building blocks



CFT: N=4 SYM @ large Nc & strong coupling 𝜆

Input:  -symmetries:  conformal, SO(6)R global,  susy

-all unprotected operators acquire large dimensions 



⇒Minimal spectrum: 1/2-BPS single-traces (& their products)

O
p
' Tr[�i1 . . .�ip ] � = p � 2,

Input:  -symmetries:  conformal, SO(6)R global,  susy

p=2: stress tensor
p>2: S5 graviton spherical harmonics

-all unprotected operators acquire large dimensions 

CFT: N=4 SYM @ large Nc & strong coupling 𝜆

Goal: compute <OpOqOrOs> at tree-level (1/Nc2)



s-channel  
OPE data

absorptive part 
= cut diagram

group 
theory

c(J,�) =

Z

⌃

⇥
Inverse block

⇤
⇥

⇥
dDiscG

⇤

[SCH 17; Simmons-Duffin, Stanford, Witten;  
Simmons-Duffin, Kravchuk]

Tool: Lorentzian inversion formula

gives OPE data from ‘absorptive part’⇥
=
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Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist

�� ` = 4+2n. As we will see, their precise form at c = 1 su�ces to fix the OPE coe�cients

to

⌦
a(0)

↵
n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coe�cients of

individual operators acquire corrections

�n,` = 4 + 2n+ `+
1

c
�(1)n,` +

1

c2
�(2)n,` + · · · (2.11)

an,` = a(0)n,` +
1

c
a(1)n,` +

1

c2
a(2)n,` + · · · (2.12)

As we will see in the next two sections �(1)n,` and a(1)n,` are again fully determined by the singular

terms in (2.8). We obtain

⌦
a(0)�(1)

↵
n,`⌦

a(0)
↵
n,`

= � n
(1 + `)(6 + `+ 2n)

,
⌦
a(1)

↵
n,`

=
1

2
@n

⌦
a(0)�(1)

↵
n,`

, (2.13)

– 4 –



x2
x3

x4
x1

What’s ‘absorptive part’?

h0|�2�3�1�4|0i ⌘ GE

Positive & bounded
cf: [Maldacena, Shenker&Stanford ’15 ‘bound on chaos’] 

[Hartman,Kundu&Tajdini ’16 ‘proof of ANEC’]

h0|T�1 · · ·�4|0i ⌘ G = GE + iM

h0|T̄�1 · · ·�4|0i ⌘ G⇤ = GE � iM⇤

double-commutator:

dDiscG ⌘ 1
2 h0|[�2,�3][�1,�4]|0i = “Im M”



x2
x3

x4
x1

dDisc kills cross-channel double-traces:

�1�4 ⇠
X

j,�

cj,�((x1 � x4)
2)

���1��4
2

[�1,�4] ⇠
X

j,�

cj,�|(x1 � x4)
2|

���1��4
2 sin(⇡

���1 ��4

2
)

/ �/N2
c

R
+ crossed =+

Figure 3. The inversion integral produces the full correlator, given on the left as a sum over Witten
diagrams, from the double-discontinuity in a single channel (and more generally, the t and u channels).

For the connected tree (second line of (3.6b)) the integral is very similar but there is an

extra log. We can simplify our life somewhat by writing it using Casimir operators:
✓

z

1� z
� 2z2

(1� z)2
� 2z3 log z

(1� z)3

◆
= �1

2
D(D � 2)

z log z

1� z
, D = z2@z(1� z)@z . (3.11)

The Casimir operators can be integrated by parts and simply give a multiplicative factor equal

to their eigenvalue on the blocks, namely: (h� 2)(h� 1)h(h+1). A similar trick will greatly

simplify things at one-loop, as shown below. We do not need to worry about boundary terms

in z since poles originate only from z ! 0. To perform the integral over z log z
1�z we then simply

expand it in powers of z/(1� z) and apply the formula (3.8) termwise. Dropping terms with

no poles we obtain a very simple result:

c(1)(h, h̄) =
⇡2

sin(⇡h)2
(h� 2)(h� 1)h(h+ 1)

2
. (3.12)

Comparing with (3.5) then give the (summed) anomalous dimension and OPE coe�cient:

⌦
a(0)�(1)

↵
n,`

= �2n,
⌦
a(1)

↵
n,`

= �@nn (3.13)

which again are in precise agreement with the results quoted in the preceding section.

Let us now interpret the results (3.9), (3.12). They express the result of the inversion in-

tegral (3.4) applied to strongly coupled super Yang-Mills theory (where one has only neglected

terms with no poles at positive h). We stress that this data determines the full tree-level

supergravity correlator: plugging the resulting anomalous dimensions and OPE coe�cients

into eq. (2.5) we checked that it reproduces precisely the OPE expansion of the known result

[16]:

G = 1 +
1

v2
+

1

c

✓
1

v
� u2D̄2,4,2,2(z, z̄)

◆
+O(1/c2). (3.14)

It is remarkable that the present computation did not use any input from supergravity: the

only assumption was the sparseness of the single-trace spectrum. Specifically, we included

in the t-channel only the protected half-BPS operators (the stress tensor multiplet and its

second Kaluza-Klein excitation), which are responsible for the singular part of Gshort(v, u)

recorded in eq. (2.8).

– 9 –

cut tree = single-trace conformal block (=known)

=
P

⇥
single
traces

Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist

�� ` = 4+2n. As we will see, their precise form at c = 1 su�ces to fix the OPE coe�cients

to

⌦
a(0)
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n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coe�cients of

individual operators acquire corrections
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�(2)n,` + · · · (2.11)

an,` = a(0)n,` +
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a(1)n,` +
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c2
a(2)n,` + · · · (2.12)

As we will see in the next two sections �(1)n,` and a(1)n,` are again fully determined by the singular

terms in (2.8). We obtain

⌦
a(0)�(1)

↵
n,`⌦

a(0)
↵
n,`

= � n
(1 + `)(6 + `+ 2n)

,
⌦
a(1)

↵
n,`

=
1

2
@n

⌦
a(0)�(1)

↵
n,`

, (2.13)

– 4 –

=

⇥=
P

single
traces

Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect

– 5 –

one-loop

) dDiscG
���
double�traces

⇠ h[�1,�4][�2,�3]i ⇠ �2/N4
c
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How to integrate?

-Large spin expansion: lightcone limit

Conceptually: 6j symbol for SO(D,2)

[Liu,Perlmutter, Rosenhaus 
& Simmons-Duffin ’18]

( ),
-explicit expressions in D=2, D=4

-Any D: leading-twist known [Cardona, (Guha, Kanumilli)& Sen ’18,
Albayrak, Meltzer& Poland ‘19; Li ’19]

-N=4SYM: special case (integer ∆): just 𝜞-functions

[Komargodski&Zhiboedov ’12; Fitzpatrick,Kaplan,Poland&Simmons Duffin '12,
Alday&Bissi&…, Kaviraj,Sen,Sinha&…, Alday,Bissi,Perlmutter&Aharony,…]

(z, z̄) ! (0, 1)



[Nirschl& Osborn ’04]

literature these are often written as Jacobi polynomials, see [? ]. The OPE decomposition
of the correlator (2.5), in the (12) or s-channel, is then

G{pi}(z, z̄,↵, ↵̄) =
X

`,�,m,n

c̃{pi}(`,�,m, n)Gp21,p34
`,� (z, z̄)Zp21,p34

m,n (↵, ↵̄). (2.10)

The summations over m,n are finite and range over the R-symmetry representations
which can appear in the tensor product of each of the pairs (1, 2) and (3, 4). Using the
general formula for the tensor product of two representations (see [? ]):

[0, p1, 0]⇥ [0, p2, 0] =
p1X

m=0

p1�mX

s=0

[m, p21 + 2s,m], (2.11)

where pij = pi � pj and we have assumed p1  p2, we get the summation range in eq. (2.10):

0  m  min{pi}, max(|p12|, |p34|) +m  n  min(p1 + p2, p3 + p4)�m, (2.12)

where the difference between n and its lower/upper bound is restricted to be an even integer.
The OPE (2.10) accounts for all the bosonic symmetries of the correlator but is rather

redundant because it does not exploit supersymmetry. The natural refinement is to use
superconformal blocks instead, but here we will follow a simpler route which is applicable
thanks to the half-BPS nature of our external operators.

2.1 Superconformal Ward identities

A half-BPS supermultiplet is annihilated by half of the 32 supercharges of the theory. Since
the remaining charges split into raising and lowering operators among the multiplet, only 1/4
of the supercharges actually act nontrivially on a given bosonic primary Op(x, y). Because we
are considering a correlator of four operators, these 1/4 are generically linearly independent
of each other and span the full algebra. Thus the correlators of superconformal descendents
are fully determined from those of the primaries [].

However, when the x and y cross-ratios are aligned in a specific way, linear independence
fails, which leads to a Ward identity satisfied by the bosonic correlator []:

@z
⇣
G(z, z̄,↵, ↵̄)

���
↵=z

⌘
= 0. (2.13)

That is, the z dependence of the correlator disappears upon setting ↵ = z.
Since the dependence of the correlator on ↵, ↵̄ is purely rational (the left-hand-side of

eq. (2.5) being polynomial in the y2ij), the Ward identities can be solved by factoring out
powers of z � ↵, and its conjugates under the (z $ z̄) and (a $ ↵̄) symmetries. The most
general solution, consistent with these symmetries, is [? ? ]:

G{pi}(z, z̄,↵, ↵̄) = k�(z,↵)�(z̄, ↵̄) +
(z � ↵)(z � ↵̄)(z̄ � ↵)(z̄ � ↵̄)

(↵� ↵̄)(z � z̄)

⇥
✓
��(z̄, ↵̄)f(z,↵)

↵z(z̄ � ↵̄)
+

�(z̄,↵)f(z, ↵̄)

↵̄z(z̄ � ↵)
+

�(z, ↵̄)f(z̄,↵)

↵z̄(z � ↵̄)
� �(z,↵)f(z̄, ↵̄)

↵̄z̄(z � ↵)

◆

– 5 –

+
(z � ↵)(z � ↵̄)(z̄ � ↵)(z̄ � ↵̄)

(zz̄)2(↵↵̄)2
H{pi}(z, z̄,↵, ↵̄), (2.14)

where � is a fixed function satisfying �(z, z) = 1, given shortly. Note that all the functions
above depend on {pi}, which we omitted for simplicity. In practice, starting from a correlator
which fulfills the Ward identity (2.13), k, which we will call the unit contribution, is obtained
simply by setting z = ↵, z̄ = ↵̄. The chiral correlator f is obtained by taking only one such
limit and subtracting the unit:

k{pi} = G{pi}(z, z̄, z, z̄)

f{pi}(z̄, ↵̄) =
↵̄z̄

z̄ � ↵̄

�
G{pi}(z, z̄, z, ↵̄)� k{pi}�{pi}(z̄, ↵̄)

� (2.15)

Finally, the reduced correlator H can be extracted from G by subtracting everything else
that comes before it in eq. (2.14).

There is a rather unique, convenient choice for the function �(z, ↵̄), which ensures that
the superconformal Casimir equation commutes with the preceding decomposition [? ]:

�{pi}(z,↵) =
⇣ z

↵

⌘max(p21,p34)/2
✓
1� a

1� z

◆max(p21+p34,0)/2

. (2.16)

The Casimir operator then annihilates the k contribution, in particular. In fact there are
four possible solutions to this constraint, obtained by replacing either “max” by a “min”:
the above solution is singled out by the fact that it does not introduce spurious negative
exponents at z ! 0 and ↵ ! 1. The same solution was used in [? ] (who discussed the
specific case that the pi’s are ordered).

We now review the implications of the Casimir equations, following []. Its action on the
chiral correlator takes on a separated form, whose general solution involves products of the
hypergeometric functions in eq. (2.7), thus giving the OPE:

f{pi}(z,↵) =
1X

j=0

X

m

b{pi}(j,m)kp21,p341+m/2+j(z)k
�p21,�p34
�m/2 (↵). (2.17)

The sum over m is finite since f is a polynomial in 1/↵, whose degree determines the range:

max(|p12|, |p34|)  m  min(p1 + p2, p3 + p4)� 2, (2.18)

where in addition m should differ from its lower bound by an even integer. Single-valuedness
of the correlator (2.5) forces j to be an integer. It must be nonnegative due to the unitarity
bound, since the superconformal Casimir eigenvalue (m+ j)(m+ j + 1)�m(m+ 1) must
be nonnegative.

The Casimir equation for the reduced correlator H also takes separated form, and its
solution is similar to the naive OPE (2.10) but with the dimension shifted by 4 in accordance

– 6 –

SUSY Ward identities

apply 1D inversion to f,  4D inversion to H

Analogous to 
flat-space S-matrix Asugra

4 = GN�16(Q)⇥ 1

stu

[non-perturbative convergence for J>-3:  
convergent sum rule for stress tensor. ]

? [Gillioz, Lu& Luty ’18;  
Zhiboedov’s talk]⇒



Example: 2222
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(four stress tensor multiplets)

The double-discontinuity is simple:

dDisc


z̄ � z

zz̄
H

(1)(z, z̄)

�
=

✓
z

1� z
�

2z2

(1� z)2
�

2z3 log z

(1� z)3

◆
dDisc


z̄

1� z̄

�
.

comes from pole of 
stress tensor exchange

T
2

2 2

2
⇠ 1

1� z̄
/ 1

x2
14x

2
23



From here, two routes: 

1. Feed dDisc into inversion integral, get OPE data

R
+ crossed =+

Figure 3. The inversion integral produces the full correlator, given on the left as a sum over Witten
diagrams, from the double-discontinuity in a single channel (and more generally, the t and u channels).

For the connected tree (second line of (3.6b)) the integral is very similar but there is an

extra log. We can simplify our life somewhat by writing it using Casimir operators:
✓

z

1� z
� 2z2

(1� z)2
� 2z3 log z

(1� z)3

◆
= �1

2
D(D � 2)

z log z

1� z
, D = z2@z(1� z)@z . (3.11)

The Casimir operators can be integrated by parts and simply give a multiplicative factor equal

to their eigenvalue on the blocks, namely: (h� 2)(h� 1)h(h+1). A similar trick will greatly

simplify things at one-loop, as shown below. We do not need to worry about boundary terms

in z since poles originate only from z ! 0. To perform the integral over z log z
1�z we then simply

expand it in powers of z/(1� z) and apply the formula (3.8) termwise. Dropping terms with

no poles we obtain a very simple result:

c(1)(h, h̄) =
⇡2

sin(⇡h)2
(h� 2)(h� 1)h(h+ 1)

2
. (3.12)

Comparing with (3.5) then give the (summed) anomalous dimension and OPE coe�cient:

⌦
a(0)�(1)

↵
n,`

= �2n,
⌦
a(1)

↵
n,`

= �@nn (3.13)

which again are in precise agreement with the results quoted in the preceding section.

Let us now interpret the results (3.9), (3.12). They express the result of the inversion in-

tegral (3.4) applied to strongly coupled super Yang-Mills theory (where one has only neglected

terms with no poles at positive h). We stress that this data determines the full tree-level

supergravity correlator: plugging the resulting anomalous dimensions and OPE coe�cients

into eq. (2.5) we checked that it reproduces precisely the OPE expansion of the known result

[16]:

G = 1 +
1

v2
+

1

c

✓
1

v
� u2D̄2,4,2,2(z, z̄)

◆
+O(1/c2). (3.14)

It is remarkable that the present computation did not use any input from supergravity: the

only assumption was the sparseness of the single-trace spectrum. Specifically, we included

in the t-channel only the protected half-BPS operators (the stress tensor multiplet and its

second Kaluza-Klein excitation), which are responsible for the singular part of Gshort(v, u)

recorded in eq. (2.8).

– 9 –

2. Find unique function:  
  - single-valued 
  - vanishes in Regge limit (z,zb->0)  
  - has predicted poles at zb=1 and infinity

Answer: H
(1) =

u
2

v
� u

4
D̄2,4,2,2(z, z̄)

D̄2422 = uv@u@v(1 + u@u + v@v)
2Li2(z)� 2Li2(z̄) + . . .

z � z̄

Matches supergravity calculations! 
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sum of multiple nearly-degenerate operators. The set of correlators really gives a matrix of
anomalous dimensions matrix, whose eigenvalues are the actual anomalous dimensions.

The operators which can mix with each other have the same R-symmetry representation
[m,n�m,m] and twist ⌧ = ��`. To obtain their matrix element in the basis of disconnected
theory operators, we need to divide by the disconnected OPE data in eq. (), and since
ha(0)ipqqp = ha(0)iqppq, we have:

�(1)pq,rs ⌘
ha(0)�(1)ipqrsq

ha(0)ipqqpha(0)irssr
=

ha(0)�(1)itpqrs + (�1)`ha(0)�(1)iuqprsq
ha(0)ipqqpha(0)irssr

, (4.20)

where the t and u superscripts denote the t and u-channel exchanges respectively. For a
given twist and R-symmetry representation, one can find the list of pairs pq, with p  q, for
which double-trace operators [pq]`,�,m,n exist, and construct the matrix in eq. (4.20). Its
eigenvalues are then the actual OPE coefficients of the double-trace operators.

To perform the computation, we wish to organize our data in terms of twist ⌧ and
R-symetry representations labelled by [m,n�m,m]. One must also consider separately the
cases where the spin ` is either even or odd. For a given twist and representation, one must
find the possible scaling dimensions of the operators in the four-point function. One can
simply consider the constraints on the three-point vertices. Given the possible (pqrs) scaling
dimensions and values of twist, R-symmetry Dynkin labels and spin, one can diagonalize
the corresponding matrix.

For example, let us consider the nontrivial representation [0, 2, 0]. The minimal twist
associated with this representation is ⌧ = 6. For odd spin, the only three-point vertex is
given by external operators pq = 24, in which case it is straightforward to diagonalize. For
even spin, one has 24 and 33. The corresponding matrix is

0

BBB@

ha(0)�(1)i2442 + (�1)`ha(0)�(1)i4242p
ha(0)i2442ha(0)i2442

ha(0)�(1)i2433 + (�1)`ha(0)�(1)i4233p
ha(0)i2442ha(0)i3333

ha(0)�(1)i3342 + (�1)`ha(0)�(1)i3342p
ha(0)i3333ha(0)i2442

ha(0)�(1)i3333 + (�1)`ha(0)�(1)i3333p
ha(0)i3333ha(0)i3333

1

CCCA
. (4.21)

Consider the 2442 component. One finds that the only possible R-symmetry representa-
tion is [0, 2, 0]. The reduced correlator inversion integral yields

c(`,�, 0, 2) =

Z 1

0

dz

z2
(1� z)2k2,21�h(z)z

�1
Z 1

0

dz̄

z̄2
(1� z̄)2(h̄)k2,2

h̄
(z̄)z̄�1

⇥
"
2

✓
z

1� z

◆3

� 4

✓
z

1� z

◆4

� 4

✓
z

1� z

◆5

log(z)

#
dDisc

✓
z̄

1� z̄

◆3

(4.22)

where we have omitted non-singular terms. To extract the anomalous dimension ha(0)�(1)i2442,
we focus on the term with the log(z) dependence.

While the full z integral, to our knowledge, cannot be trivially computed explicitly, one
can understand part of the expected result. One can expand the log term and apply eq. (A.3)

– 23 –

Straightforward to apply to other correlators

�(1)
6,0,2 =

 
�(1)
24,24 �(1)

24,33

�(1)
33,24 �(1)

33,33

!

with:

get mixing matrices. e.g.: at twist 6 and R-symmetry[0,2,0]:

Amazingly, the eigenvalues are nice:

(h̄ = j + 5)

termwise. This is equivalent to taking the derivative @h cot
�
⇡(�� p34

2 � h)
�

multiplying the
remaining gamma functions in eq. (A.3). This produces a double-pole as csc2(⇡h), therefore
one can deal with the z integral by using eq. (A.3) and substituting the cotangent function
by csc2(⇡h).

The full z integral will also have a subleading pole which will contribute to ha(1)i. To

obtain this contribution, one would need to integrate explicitly
⇣

z
1�z

⌘�
log(z) for arbitrary

positive integer �. However, this won’t be necessary as we will not compute the a(1) OPE
contribution, and restrict our future discussions to the level of the double-discontinuity and
not the full correlator, thus relieving the requirement to solve this problem.

Using eqs. (A.2)-(A.3), the above matrix with h = 1 + ⌧
2 gives

⇣
�(1)

⌘+
6,0,2

=
�60

(h̄� 4)(h̄� 1)(h̄)(h̄+ 3)

 
12 + h̄(h̄� 1) 6

p
h̄(h̄� 1)

6
p

h̄(h̄� 1) 6 + h̄(h̄� 1)

!
(4.23)

which has the two eigenvalues:

�+
6,0,2 =

⇢
� 60(h̄+ 2)

(h̄� 4)(h̄� 1)(h̄)
, � 60(h̄� 3)

(h̄� 1)(h̄)(h̄+ 3)

�
=
n��(8)

0,2(4, h̄)

(h̄� 4)6
,
��(8)

0,2(4, h̄)

(h̄� 4)6

o

(4.24)
where (...)6 is the Pochhammer symbol and �(8) is the polynomial introduced in eq. (3.9).
This way of writing the result was suggested by a recent conjecture by [? ], discussed shortly.
For ⌧ = 8, again for the [0, 2, 0] representation, the matrix is somewhat bigger:

0

BBB@

(2442) (2433) (2435) (2444)

(3342) (3333) (3335) (3344)

(3542) (3533) (3553) (3544)

(4442) (4433) (4453) (4444)

1

CCCA
. (4.25)

For odd spin, one removes the second and last rows and columns. We then find the
eigenvalues, for even and odd spins:

��
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 4)6
,

1

(h̄� 2)6

o
,

�+
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 5)6
,

1

(h̄� 3)6
,

1

(h̄� 3)6
,

1

(h̄� 1)6

o
.

(4.26)

Note that in the even spin case, the second and third eigenvalues are degenerate.
It is amazing that the eigenvalues of nontrivial matrices give rational functions of h̄.
Reciprocity symmetry, h̄ ! 1 � h̄, is preserved in an interesting way. The matrix

elements in eq. (4.23) are all invariants under h̄ ! 1� h̄ (this is always true and trivially
follows from the form of the integral (??)). The individual eigenvalues are not invariant, but
the set of eigenvalues is, as it should: reciprocity interchanges the first and last eigenvalue.

One can continue this process to obtain anomalous dimension eigenvalues in different
R-symmetry representations and higher twist which would involve diagonalizing larger
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termwise. This is equivalent to taking the derivative @h cot
�
⇡(�� p34

2 � h)
�

multiplying the
remaining gamma functions in eq. (A.3). This produces a double-pole as csc2(⇡h), therefore
one can deal with the z integral by using eq. (A.3) and substituting the cotangent function
by csc2(⇡h).

The full z integral will also have a subleading pole which will contribute to ha(1)i. To

obtain this contribution, one would need to integrate explicitly
⇣

z
1�z

⌘�
log(z) for arbitrary

positive integer �. However, this won’t be necessary as we will not compute the a(1) OPE
contribution, and restrict our future discussions to the level of the double-discontinuity and
not the full correlator, thus relieving the requirement to solve this problem.

Using eqs. (A.2)-(A.3), the above matrix with h = 1 + ⌧
2 gives

⇣
�(1)

⌘+
6,0,2

=
�60

(h̄� 4)(h̄� 1)(h̄)(h̄+ 3)

 
12 + h̄(h̄� 1) 6

p
h̄(h̄� 1)

6
p

h̄(h̄� 1) 6 + h̄(h̄� 1)

!
(4.23)

which has the two eigenvalues:

�+
6,0,2 =

⇢
� 60(h̄+ 2)

(h̄� 4)(h̄� 1)(h̄)
, � 60(h̄� 3)

(h̄� 1)(h̄)(h̄+ 3)

�
=
n��(8)

0,2(4, h̄)

(h̄� 4)6
,
��(8)

0,2(4, h̄)

(h̄� 2)6

o

(4.24)
where (...)6 is the Pochhammer symbol and �(8) is the polynomial introduced in eq. (3.9).
This way of writing the result was suggested by a recent conjecture by [? ], discussed shortly.
For ⌧ = 8, again for the [0, 2, 0] representation, the matrix is somewhat bigger:

0

BBB@

(2442) (2433) (2435) (2444)

(3342) (3333) (3335) (3344)

(3542) (3533) (3553) (3544)

(4442) (4433) (4453) (4444)

1

CCCA
. (4.25)

For odd spin, one removes the second and last rows and columns. We then find the
eigenvalues, for even and odd spins:

��
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 4)6
,

1

(h̄� 2)6

o
,

�+
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 5)6
,

1

(h̄� 3)6
,

1

(h̄� 3)6
,

1

(h̄� 1)6

o
.

(4.26)

Note that in the even spin case, the second and third eigenvalues are degenerate.
It is amazing that the eigenvalues of nontrivial matrices give rational functions of h̄.
Reciprocity symmetry, h̄ ! 1 � h̄, is preserved in an interesting way. The matrix

elements in eq. (4.23) are all invariants under h̄ ! 1� h̄ (this is always true and trivially
follows from the form of the integral (??)). The individual eigenvalues are not invariant, but
the set of eigenvalues is, as it should: reciprocity interchanges the first and last eigenvalue.

One can continue this process to obtain anomalous dimension eigenvalues in different
R-symmetry representations and higher twist which would involve diagonalizing larger

– 24 –

2

2 4

4

2

2

2 4

4

2,4

3

2 4

3

3
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we looked at many cases, ie twist=8 [0,2,0]:

termwise. This is equivalent to taking the derivative @h cot
�
⇡(�� p34

2 � h)
�

multiplying the
remaining gamma functions in eq. (A.3). This produces a double-pole as csc2(⇡h), therefore
one can deal with the z integral by using eq. (A.3) and substituting the cotangent function
by csc2(⇡h).

The full z integral will also have a subleading pole which will contribute to ha(1)i. To

obtain this contribution, one would need to integrate explicitly
⇣

z
1�z

⌘�
log(z) for arbitrary

positive integer �. However, this won’t be necessary as we will not compute the a(1) OPE
contribution, and restrict our future discussions to the level of the double-discontinuity and
not the full correlator, thus relieving the requirement to solve this problem.

Using eqs. (A.2)-(A.3), the above matrix with h = 1 + ⌧
2 gives

⇣
�(1)

⌘+
6,0,2

=
�60

(h̄� 4)(h̄� 1)(h̄)(h̄+ 3)

 
12 + h̄(h̄� 1) 6

p
h̄(h̄� 1)

6
p

h̄(h̄� 1) 6 + h̄(h̄� 1)

!
(4.23)

which has the two eigenvalues:

�+
6,0,2 =

⇢
� 60(h̄+ 2)

(h̄� 4)(h̄� 1)(h̄)
, � 60(h̄� 3)

(h̄� 1)(h̄)(h̄+ 3)

�
=
n��(8)

0,2(4, h̄)

(h̄� 4)6
,
��(8)

0,2(4, h̄)

(h̄� 4)6

o

(4.24)
where (...)6 is the Pochhammer symbol and �(8) is the polynomial introduced in eq. (3.9).
This way of writing the result was suggested by a recent conjecture by [? ], discussed shortly.
For ⌧ = 8, again for the [0, 2, 0] representation, the matrix is somewhat bigger:

0

BBB@

(2442) (2433) (2435) (2444)

(3342) (3333) (3335) (3344)

(3542) (3533) (3553) (3544)

(4442) (4433) (4453) (4444)

1

CCCA
. (4.25)

For odd spin, one removes the second and last rows and columns. We then find the
eigenvalues, for even and odd spins:

��
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 4)6
,

1

(h̄� 2)6

o
,

�+
8,0,2 = ��(8)

0,2(5, h̄)⇥
n 1

(h̄� 5)6
,

1

(h̄� 3)6
,

1

(h̄� 3)6
,

1

(h̄� 1)6

o
.

(4.26)

Note that in the even spin case, the second and third eigenvalues are degenerate.
It is amazing that the eigenvalues of nontrivial matrices give rational functions of h̄.
Reciprocity symmetry, h̄ ! 1 � h̄, is preserved in an interesting way. The matrix

elements in eq. (4.23) are all invariants under h̄ ! 1� h̄ (this is always true and trivially
follows from the form of the integral (??)). The individual eigenvalues are not invariant, but
the set of eigenvalues is, as it should: reciprocity interchanges the first and last eigenvalue.

One can continue this process to obtain anomalous dimension eigenvalues in different
R-symmetry representations and higher twist which would involve diagonalizing larger
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confirm a recent conjecture
[Aprile, Drummond, Heslop&Paul ’18]

All eigenvalues take the form:

�(1) = �1

c

�(8)

(j + 1 + integer)6
!

✓

[they decomposed the Rastelli-Zhou formula into super-blocks]
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Ads5

S5

R10

G10
Dp1p2p3p4G10

O4
O4

O4
O4

Op2

Op1

Op3

Op4

Figure 4: The flat-space limit of a scattering process in AdS5⇥ S5 map to one in R10. In
the flat-space limit, the dilaton has � = 4. We conjecture that the ten-dimensional dilaton
correlator G10 can be projected to a AdS5⇥ S5 correlator by a suitable differential operator
Dp1p2p3p4 acting on G10.

dimensional dilaton most naturally map to correlators of Lpi , the most natural guess would
be H̃ = �(8)H as defined in section 3.3. However, to reveal its hidden conformal symmetry,
we had to divide the 10D tree amplitude by the dimensionless “coupling” GN�16(Q)/16,
which eqs. (5.4) and (5.5) suggest to identify as a multiple of �(8)/c. Thus a better guess is
to divide the order 1/c dilaton correlator by �(8) and thus consider H itself, which turns out
to be a correct prediction. We have to bear in mind that this division is ill-defined however
unless one cancels the protected contributions killed by �(8); a simple work-around is to
subtract the free correlator. The correct guess for the functions H̃ which satisfies eq. (5.13),
including a normalization factor, thus turns out to be:

H̃(0)
pqrs ⌘

4
p
p1p2p3p4

�(8)H(0)
pqrs, H̃(1)

pqrs ⌘
4

p
p1p2p3p4

⇣
H(1)

pqrs �H(1)free
pqrs

⌘
. (5.15)

If this sequence were to continue at loop level supergravity, a natural form of the next term
would be H̃(2)

pqrs = 1
�(8) (H

(2)
pqrs �H(2)free

pqrs ), but we leave this for further study.
Eqs. (5.13) and (5.15), independent of their origins, yield precise and testable relations

among tree-level correlators.

5.3 Checking the conjecture from the calculated correlators

Let us first check the relation for the disconnected correlator H̃(0). According to eq. (3.17)

G(0)
10 (u, v) = �(8)H(0)

2222 = C(2)2
✓
u4 +

u4

v4

◆
, (5.16)

– 28 –

Part II:  
10D IIB supergravity ≃ CFT



Crazy that complicated matrix has rational eigenvalues! 

Symmetry explanation:

1. AdS5xS5 is conformally flat
ds2AdS5⇥S5 = z�2(dz2 + dxµdx

µ + z2d⌦2
5)

2. IIB supergravity amplitude ~ conformal

dimensionless 
‘coupling'

conformal  
amplitude

Asugra,10D
4 = 8⇡GN�16(Q)⇥ 1

stu

G(10D)
N ⇠ 1/m8
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Evidence of SO(10,2) symmetry

2. Offsets match SO(4,2)⊂SO(10,2) reduction

1. Eigenvalue matches flat space phase shift
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5 An accidental 10-dimensional conformal symmetry

In this section we propose an explanation for the remarkable conjecture (4.27): that it
originates from the conformal flatness of the AdS5⇥S5 geometry and an accidental SO(10,2)
conformal symmetry of the supergravity four-point amplitude. This will lead to new
conjectures which we will test.

5.1 A mysterious equality with 10-dimensional S-matrix partial waves

Our main inspiration will be the following empirical observation: the conjectured anomalous
dimension is equal to a quantity computed in flat ten-dimensional space. We consider the
2 ! 2 scattering of identical complex axi-dilatons in IIB supergravity:
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. (5.1)

Below we’ll use that 8⇡GN = ⇡5L8

c with c = N2�1
4 in the AdS5⇥S5 context, to express this

in terms of c and the AdS radius L. We now consider the partial-wave decomposition of
this amplitude; in general dimension this can be written using Gegenbauer polynomials (see
for example [58]) as:
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where C̃(�)
` (x) = C(�)

` (x)/C(�)
` (1) is a Gegenbauer polynomial normalized to unity at 1, the

scattering angle is cos(✓) = 1+ 2t
s , and we should put d = 10 in the above. The normalization

factors are such that A`(s) = 1 for the disconnected part of the S-matrix of two identical
particles. Retaining the disconnected part and computing the A` using the orthogonality
relation5 we find:
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This should be compared with the exponential of the anomalous dimension in eq. (4.27),
which controls the phase of each conformal block in the bulk point limit (see for example
[1, 8]):

e�i⇡� = 1 + i
⇡

c

�(8)

(`e↵ + 1)6
+O(1/c) . (5.5)

The resemblance of the phases (5.4) and (5.5) is too striking to be an accident and this
suggests a direct relation between the four-dimensional theory and the flat ten dimensional
supergravity. We will not fully derive such a relation from first principles here, but we will
try to guess what form it could take and deduce precise implications.

5Specifically, the relevant relation is:
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used:

transforms like a 10D CFT correlator of four scalars with scaling dimension 4, that is:
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are the then-dimensional cross-ratios.
Let us now write the prediction in eq. (5.10) in terms of cross-ratios, by dividing the

left-hand-side by the factor in eq. (2.5) (with the pi shifted by 2). We can extract the
component of correct homogeneity degree in y by performing contour integrals in auxiliary
variables ai introduced via the rescaling y2ij ⌘ yi · yj 7! aiajy2ij . With a suitable rescaling of
the a’s this gives a formula with cross-ratios only:
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⌘ Dp1p2p3p4G10(u, v). (5.14)

The second definition emphasizes the fact that the contour integral really just defines a
differential operator, in the first few cases for example we find:
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Relation (5.14) is the main result of this section: it expresses all tree-level correlators as
derivatives of a single one, G10 = H̃2222.

It remains to make a precise guess for the left-hand-side H̃2222. The correct guess can
of course only be justified by explicit computations as in the next subsection, but it may
be helpful to handwave-motivate the result here. Since the spherical harmonics of the ten-
dimensional dilaton most naturally map to correlators of Lpi , the most natural guess would
be H̃ = �(8)H as defined in section ??. However, to reveal its hidden conformal symmetry,
we had to divide the 10D tree amplitude by the dimensionless “coupling” GN�16(Q), which
we will tentatively identify with �(8)/c. This analogy suggests that at first order in 1/c we
should divide the correlator by �(8) and thus consider H itself, which turns out to be a
correct prediction. We have to bear in mind that this division is ill-defined however unless
one cancels the protected contributions killed by �(8); this may be done very naturally
by subtracting the free correlator. The correct guess for the functions H̃ which satisfies
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3* To get a given <OpOqOrOs>: take terms with  
correct exponent of R-symmetry variables y’s
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The correct guess is tricky in the details.

(4D) correlator of Lagrangians has 8-derivative Casimir

([L]=4: like 10D free field)

(10D) dilaton amplitude is s4 times conformal 

A(10) = 8⇡GNs4 ⇥ 1

stu

hLLL̄L̄i(4) = �(8)
H

successful guess needs �(8) $ (s/4)4, H
tree $ 1/(stu)so



Rastelli&Zhou:  
all correlators 
in Mellin space

Aprile et al:  
-double-trace mixing 

-one loop
this work

symmetry

SO(10,2)  
symmetry

complete agreement between all methods!

Arutyunov,Klabbers& 
Savin ’18: Witten diagrams

OPE 
analysis

inversion 
formula
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Further implications of 10D conformal symmetry:

4. simple Mellin transform of correlators:

[Rastelli&Zhou ’16]
Mpqrs(s, t) ⇠

X 1/(i!j!k!`!m!n!)

(s� i)(t� j)(u� k)

6. Double-trace mixing diagonalized by 10D blocks

⇥=
P

single
traces

Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:
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In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as
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2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect

– 5 –

p’,p’’

p’

p’’

5. Proof reduced to group theory: check poles of dDisc

H̃
(1)
pqrs

���
v�poles

?
= Dpqrs


� 2u4 log u

(1� u)3v
� u

3(1 + u)

(1� u)2v

�
checked 

to p,q,r,s~10

[SCH&Trinh '18]



the eigenvalues are rational numbers, and also why these numbers are specifically equal to
S-matrix phase shifts.

We have verified in many more examples that the ten-dimensional blocks always turn
into projectors onto eigenspaces, including in cases with nontrivial multiplicity. Presumably,
a more thorough study of these matrices themselves would be more easily carried out at the
level of 3-point vertices rather than four-point correlators.

As proposed in ref. [], the solution to the double-trace mixing problem at order 1/c

enables to compute the leading logarithmic terms at each loop order. Thanks to the ten-
dimensional relation (??) this can be done for any correlator without computing any matrix.
We simply add more powers of � to the ten-dimensional OPE in eq. (5.28) to find H̃2222,
and then obtain the others by taking derivatives:

H(k)
pqrs(z, z̄,↵, ↵̄)

���
logk u

=
h
�(8)

ik�1
· Dpqrs · D(3) · h(k)(z). (5.32)

This result is a product of very many differential operators. The third-order operator D(10),
defined in eq. (C.2), builds two-variable ten-dimensional blocks from single-variable functions
h(k). The operator Dpqrs, from eq. (??), then extracts various 4D correlators; for the stress
tensor multiplet this operation is trivial, D2222 = 1. Finally, the power of �(8), defined
in eq. (??), accounts for the fact that it is only the ratio �/�(8) that is compatible with
the ten-dimensional symmetry. The ordering of operations is important: in general �(8)

destroys the ten-dimensional structure and must act to the left of Dpqrs.
Using the explicit form of the block in eq. (C.3), together with the coefficients in

eqs. (5.26) and eqs. (5.28), the single-variable is given explicitly as:
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In the first few cases the sum is readily computed,

h(0)(z) = 2880
z(2� z)

1� z
, (5.34)

h(1)(z) = 120
(1� z)2 log(1� z)

z4
+ 10

(z � 2)(z2 + 6z � 6)
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(5.35)
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Li2(z)� (1� z)5Li2(z/(1� z))

4z5
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8z4
(5.36)

+
(z � 2)(1� z)

z3
+

235

576

z � 2

z
. (5.37)

Plugging h(0)(z) into eq. (5.32) (and multiplying both sides by �(8)) reproduces eq. (5.15).
Plugging h(1)(z) we reproduce the logarithmic term given in eq. (5.27) and its extension to
all Hpqrs. Finally, plugging h(2)(z) we reproduce the one-loop double-discontinuity of H2222

computed in refs. ?? and now predict the log2 u terms for all Hpqrs correlators. Needless to
say, the expression which results after taking the 11 derivatives no longer fit on two lines!

Let us summarize our results and conjectures. . . . At tree-level, more is true: the
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gives leading-log (logL+1) terms for all correlators

matches 2222 from: [Alday & Bissi ’17,
Aprile,Drummond,Heslop&Paul ‘17] 

6* Explicit formula for leading-log at each loop order:
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h(0)(z) = 2880
z(2� z)

1� z
, (5.34)

h(1)(z) = 120
(1� z)2 log(1� z)

z4
+ 10

(z � 2)(z2 + 6z � 6)

z3
(5.35)

h(2)(z) =
Li2(z)� (1� z)5Li2(z/(1� z))

4z5
� (1� z)(2z2 � 7z + 7) log(1� z)

8z4
(5.36)

+
(z � 2)(1� z)

z3
+

235

576

z � 2

z
. (5.37)

Plugging h(0)(z) into eq. (5.32) (and multiplying both sides by �(8)) reproduces eq. (5.15).
Plugging h(1)(z) we reproduce the logarithmic term given in eq. (5.27) and its extension to
all Hpqrs. Finally, plugging h(2)(z) we reproduce the one-loop double-discontinuity of H2222

computed in refs. ?? and now predict the log2 u terms for all Hpqrs correlators. Needless to
say, the expression which results after taking the 11 derivatives no longer fit on two lines!

Let us summarize our results and conjectures. . . . At tree-level, more is true: the
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Example:



[Giuso, Russo & Wen ‘19,
Rastelli, Roumpedakis& Zhou ‘19]

Correlator of tensor multiplets in AdS3xS3xK3

A(6) ⇠ G(6)
N �8(Q)⇥


1

s
+

1

t
+

1

u

�

dimensionless 
‘coupling'

conformal  
amplitude

(what about stress-tensor?)

Generalizations 1.

Also, All S3 harmonics packaged together!



Generalization 2: stringy corrections?

[cf Bissi's talk]

� = ��(8)

c

1

(j + 1 +m)6
+

��3/2

c
�j,0�m,0B4(⌧)

+
��5/2

c
(�j+m,2B5(⌧) + (�j+m,0B

0
5(⌧)) + . . .

pendix D), with the final result

lp = 2(p� 1)�
4p(p2 � 1)⇣(3)

�3/2
�

3p(p2 � 1)(3� 2p2)⇣(5)

�5/2

�
15p(p2 � 1)(135� 124p2 + 16p4)⇣(7)

32�7/2

�
35p(p2 � 1)(1575� 1654p2 + 320p4 � 16p6)⇣(9)

64�9/2
+ · · · .

(3.49)

In the next section, we will use this quantity to fix some of the parameters left undetermined

in the expressions (2.14) and (2.16) from Section 2.1.

4 Relating N = 4 SYM and 10d S-matrix

Let us now use various constraints to determine the coe�cients Bn
k (p) in (1.1). The coe�-

cients Bn
1 (p) were already determined in (2.18), so let us focus on the remaining ones, order

by order in the 1/� expansion. The constraints will come from the comparison of the flat

space limit of the CFT correlators with flat space string theory scattering amplitudes, from

the supersymmetric localization result (3.49), and when p > 2 also from the implications of

a conjecture of [1] on the form of one-loop Mellin amplitudes. What we will find is that the

reduced Mellin amplitude is

Mp(s, t) =
4p

�(p� 1)

1

c


1

(s� 2)(t� p)(u� p)
+

(p+ 1)3
4

⇣(3)
1

�3/2

+
(p+ 1)5

32
⇣(5)


s2 + t2 + u2 +

2p(p� 2)

p+ 5
s+

✓
�2p2 +

50 + 20p(p+ 2)

(p+ 4)(p+ 5)

◆�
1

�5/2

+ · · ·

�
+O(c�2) .

(4.1)

In the particular case p = 2, this expression simplifies to

M2(s, t) =
8

c


1

(s� 2)(t� 2)(u� 2)
+

15⇣(3)

�3/2
+

315⇣(5)

4�5/2

�
s2 + t2 + u2

� 3
�
+ · · ·

�
+O(c�2) .

(4.2)

4.1 Constraints from supersymmetric localization

We will begin with the constraints on hS2S2SpSpi coming from supersymmetric localization

results (3.28) and (3.49). The integrals (3.27) of (2.17) can be computed numerically to high

23

22pp in Mellin space:

[Alday,Bissi&Perlmutter;  
Binder,Chester,Pufu&Wang ’19]

(Suggestive of 4- and 6-order Casimir acting on 10D object?)

only j10=0 (or 2) eigenvalues change, not eigenvectors!!

[from flat space+SUSY localization]

[Drummond,Nandan,Paul&Rigatos]



Summary
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Further questions

cf: [Loebbert, Mojaza& Plefka ‘18: hidden conformal symmetry]
[cf Maldacena’ 11: Einstein vs conformal gravity]

-Less conformal-looking theories: 6D (2,0),  ABJM?

-Studied double-trace mixing in strongly coupled 
 N=4 SYM using Lorentzian inversion formula

-SO(10,2) symmetry:  formula for all spherical harmonics!

-Leading logs to all orders in 1/Nc

- Simplify other AdS5xS5 computations? 

- Higher loops/higher points? [Goncalves, Pereira & Zhou  ’19]


