Unreasonble Simplicity of $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$ correlators

Simon Caron-Huot McGill University

on: I7II.0203I with Fernando Alday I809.09I73 with Anh-Khoi Trinh

Strings 2019 @ Brussels
$\mathrm{N}=4$ super-Yang-Mills:
toy model for 4D field theory and AdS gravity
remains rich\&intricate: laboratory for new tools planar integrability; localization; perturbation theory,...
this talk: supergravity limit.
study correlators dual to KK modes on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. beyond planar limit

Covariant propagator in $\operatorname{AdS}_{5} \times \mathbf{S}^{5}$ superspace

```
Peng Dai *1, Ru-Nan Huang }\mp@subsup{}{}{\dagger2,1}\mathrm{ , and Warren Siegel }\ddagger
    1 C.N. Yang Institute for Theoretical Physics,
    Stony Brook University,
    Stony Brook, NY 11794-3840, USA
    2 Institute of Theoretical Physics,
    Lanzhou University,
    Lanzhou 730000, People's Republic of China
```

Abstract: We give an explicit superspace propagator for the chiral scalar field strength
of 10D IIB supergravity on an $\operatorname{AdS}_{5} \times S^{5}$ background. Because this space is conformally
flat, the propagator is very simple, almost identical to that of flat space. We also give an
explicit expansion over the Kaluza-Klein modes of S^{5}. The fact that the full propagator
is so much simpler suggests that, as in 2D conformal field theory, AdS/CFT calculations
would be simpler without a mode expansion.

KEYWORDS: AdS/CFT, coset superspace, covariant propagator.

We'll fulfill this dream for four-point correlators

Recipe:

I.Take correlator of lowest KK-mode (four axidilatons)
[D'Hoker, Freedman, Mathur,

$$
\langle 0| \phi \phi \bar{\phi} \bar{\phi}|0\rangle=\frac{G(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

2. Uplift all distances to IOD

$$
x_{i j}^{2} \mapsto\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

Claim: this gives all KK mode correlators!

Outline

- Calculation technique
- Result: IOD IIB sugra \simeq CFT [for some tree correlators]
- Generalizations

Supergravity Feynman rules are hard.
break correlators into physical CFT building blocks

Supergravity Feynman rules are hard.
break correlators into physical CFT building blocks

CFT: N=4 SYM @ large $N_{c} \&$ strong coupling λ

Input: -symmetries: conformal, $\mathrm{SO}(6)_{\mathrm{R}}$ global, susy
-all unprotected operators acquire large dimensions

CFT: N=4 SYM @ large $N_{c} \&$ strong coupling λ

Input: -symmetries: conformal, $\mathrm{SO}(6)_{\mathrm{R}}$ global, susy
-all unprotected operators acquire large dimensions
\Rightarrow Minimal spectrum: I/2-BPS single-traces (\& their products)

$$
\mathcal{O}^{p} \simeq \operatorname{Tr}\left[\phi^{i_{1}} \ldots \phi^{i_{p}}\right] \quad \Delta=p \geq 2
$$

$\mathrm{p}=2$: stress tensor
$p>2$: S_{5} graviton spherical harmonics
Goal: compute < OpOqOrOs> at tree-level $\left(\mathrm{I} / \mathrm{N}_{\mathrm{c}}{ }^{2}\right)$

Tool: Lorentzian inversion formula

[SCH I7; Simmons-Duffin, Stanford, Witten; Simmons-Duffin, Kravchuk]
gives OPE data from 'absorptive part'

What's 'absorptive part'?

$$
\begin{gathered}
\langle 0| T \phi_{1} \cdots \phi_{4}|0\rangle \equiv G=G_{E}+i \mathcal{M} \\
\langle 0| \bar{T} \phi_{1} \cdots \phi_{4}|0\rangle \equiv G^{*}=G_{E}-i \mathcal{M}^{*}
\end{gathered}
$$

$$
\langle 0| \phi_{2} \phi_{3} \phi_{1} \phi_{4}|0\rangle \equiv G_{E}
$$

double-commutator:
$\mathrm{dDisc} G \equiv \frac{1}{2}\langle 0|\left[\phi_{2}, \phi_{3}\right]\left[\phi_{1}, \phi_{4}\right]|0\rangle=" \mathrm{Im} \mathcal{M} "$

Positive \& bounded

dDisc kills cross-channel double-traces:

$$
\phi_{1} \phi_{4} \sim \sum_{j, \Delta} c_{j, \Delta}\left(\left(x_{1}-x_{4}\right)^{2}\right)^{\frac{\Delta-\Delta_{1}-\Delta_{4}}{2}}
$$

$$
\left[\phi_{1}, \phi_{4}\right] \sim \sum_{j, \Delta}^{j, \Delta} c_{j, \Delta}\left|\left(x_{1}-x_{4}\right)^{2}\right|^{\frac{\Delta-\Delta_{1}-\Delta_{4}}{2}} \sin \left(\pi \frac{\Delta-\Delta_{1}-\Delta_{4} \longleftarrow}{2} \propto \gamma / N_{c}^{2}\right.
$$

$$
\left.\Rightarrow \mathrm{dDisc} G\right|_{\text {double-traces }} \sim\left\langle\left[\phi_{1}, \phi_{4}\right]\left[\phi_{2}, \phi_{3}\right]\right\rangle \sim \gamma^{2} / N_{c}^{4}
$$

cut tree = single-trace conformal block (=known)

How to integrate?
Conceptually: 6j symbol for $\mathrm{SO}(\mathrm{D}, 2)$
-explicit expressions in $D=2, D=4$
[Liu,Perlmutter, Rosenhaus \& Simmons-Duffin 'I8]
-Large spin expansion: lightcone limit $(z, \bar{z}) \rightarrow(0,1)$
[Komargodski\&Zhiboedov 'I2; Fitzpatrick,Kaplan,Poland\&Simmons Duffin 'I2, Alday\&Bissi\&..., Kaviraj,Sen,Sinha\&...,Alday,Bissi,PerImutter\&Aharony,...]
-Any D: leading-twist known [Cardona, (Guha, Kanumilli)\& Sen '18, Albayrak, Meltzer\& Poland ' 19 ; Li ' 19$]$
-N=4SYM: special case (integer Δ): just Γ-functions

SUSY Ward identities

$$
\begin{aligned}
& \mathcal{G}_{\left\{p_{i}\right\}}(z, \bar{z}, \alpha, \bar{\alpha}) € k(z, \alpha) \chi(\bar{z}, \bar{\alpha})+\frac{(z-\alpha)(z-\bar{\alpha})(\bar{z}-\alpha)(\bar{z}-\bar{\alpha})}{(\alpha-\bar{\alpha})(z-\bar{z})} \\
& \times\left(-\frac{\chi(\bar{z}, \bar{\alpha}\langle f(z, \alpha)}{\alpha z(\bar{z}-\bar{\alpha})}+\frac{\chi(\bar{z}, \alpha) f(z, \bar{\alpha})}{\bar{\alpha} z(\bar{z}-\alpha)}+\frac{\chi(z, \bar{\alpha}) f(\bar{z}, \alpha)}{\alpha \bar{z}(z-\bar{\alpha})}-\frac{\chi(z, \alpha) f(\bar{z}, \bar{\alpha})}{\bar{\alpha} \bar{z}(z-\alpha)}\right) \\
& +\frac{(z-\alpha)(z-\bar{\alpha})(\bar{z}-\alpha)(\bar{z}-\bar{\alpha})}{(z \bar{z})^{2}(\alpha \bar{\alpha})^{2}}+H_{\left\{p_{i}\right\}}(z, \bar{z}, \alpha, \bar{\alpha}) . \text {. } \\
& \text { Analogous to } \\
& \text { flat-space S-matrix } A_{4}^{\text {sugra }}=G_{N} \delta^{16}(Q) \times \frac{1}{s t u}
\end{aligned}
$$

apply ID inversion to $f, 4 \mathrm{D}$ inversion to H

[non-perturbative convergence for J>-3: convergent sum rule for stress tensor.] \Rightarrow
[Gillioz, Lu\& Luty 'I8; Zhiboedov's talk]

Example: 2222

(four stress tensor multiplets)
The double-discontinuity is simple:
$\mathrm{dDisc}\left[\frac{\bar{z}-z}{z \bar{z}} \mathcal{H}^{(1)}(z, \bar{z})\right]=\left(\frac{z}{1-z}-\frac{2 z^{2}}{(1-z)^{2}}-\frac{2 z^{3} \log z}{(1-z)^{3}}\right) \mathrm{dDisc}\left[\frac{\bar{z}}{1-\bar{z}}\right]$.
comes from pole of stress tensor exchange

$$
\sim \frac{1}{1-\bar{z}} \propto \frac{1}{x_{14}^{2} x_{23}^{2}}
$$

From here, two routes:

I. Feed dDisc into inversion integral, get OPE data

$$
c^{(1)}(h, \bar{h})=\frac{\pi^{2}}{\sin (\pi h)^{2}} \frac{(h-2)(h-1) h(h+1)}{2} .
$$

2. Find unique function:

- single-valued
- vanishes in Regge limit (z,zb->0)
- has predicted poles at $z b=I$ and infinity

Answer: $H^{(1)}=\frac{u^{2}}{v}-u^{4} \bar{D}_{2,4,2,2}(z, \bar{z})$

$$
\bar{D}_{2422}=u v \partial_{u} \partial_{v}\left(1+u \partial_{u}+v \partial_{v}\right) \frac{2 \operatorname{Li}_{2}(z)-2 \operatorname{Li}_{2}(\bar{z})+\ldots}{z-\bar{z}}
$$

Matches supergravity calculations!

Straightforward to apply to other correlators

get mixing matrices. e.g.: at twist 6 and R -symmetry $[0,2,0]$:

$$
\gamma_{6,0,2}^{(1)}=\left(\begin{array}{ll}
\gamma_{24,24}^{(1)} & \gamma_{24,33}^{(1)} \\
\gamma_{33,24}^{(1)} & \gamma_{33,33}^{(1)}
\end{array}\right) \text { with: } \quad \gamma_{p q, r s}^{(1)} \equiv \frac{\left\langle a^{(0)} \gamma^{(1)}\right\rangle_{p q r s}}{\sqrt{\left\langle a^{(0)}\right\rangle_{p q q p}\left\langle a^{(0)}\right\rangle_{r s s r}}}
$$

Amazingly, the eigenvalues are nice:

$$
\left(\gamma^{(1)}\right)_{6,0,2}^{+}=\left\{\frac{-\Delta_{0,2}^{(8)}(4, \bar{h})}{(\bar{h}-4)_{6}}, \frac{-\Delta_{0,2}^{(8)}(4, \bar{h})}{(\bar{h}-2)_{6}}\right\} \quad(\bar{h}=j+5)
$$

we looked at many cases, ie twist=8 [0,2,0]:

$$
\left(\begin{array}{llll}
(2442) & (2433) & (2435) & (2444) \\
(3342) & (3333) & (3335) & (3344) \\
(3542) & (3533) & (3553) & (3544) \\
(4442) & (4433) & (4453) & (4444)
\end{array}\right)
$$

All eigenvalues take the form:

$$
\gamma^{(1)}=-\frac{1}{c} \frac{\Delta^{(8)}}{(j+1+\text { integer })_{6}}!
$$

confirm a recent conjecture
[Aprile, Drummond, Heslop\&Paul 'I8]

Part II:

IOD IIB supergravity \simeq CFT

Crazy that complicated matrix has rational eigenvalues!

Symmetry explanation:

I. AdS $5_{5 x} S^{5}$ is conformally flat

$$
d s_{A d S_{5} \times S^{5}}^{2}=z^{-2}\left(d z^{2}+d x_{\mu} d x^{\mu}+z^{2} d \Omega_{5}^{2}\right)
$$

2. IIB supergravity amplitude ~ conformal

$$
A_{4}^{\text {sugra,10D }}=\underbrace{8 \pi G_{N} \delta^{16}(Q) \times \frac{1}{\text { stu }}, ~}_{\text {dimensionless }}
$$

$$
G_{N}^{(10 D)} \sim 1 / m_{\mathrm{pl}}^{8}
$$

conformal amplitude

Evidence of $\mathrm{SO}(10,2)$ symmetry [in 4-pt correlator]
I. Eigenvalue matches flat space phase shift

$$
\delta_{\ell}^{(10)}(s)=-\frac{(L \sqrt{s} / 2)^{8}}{c} \frac{1}{(j+1)_{6}}
$$

2. Offsets match $\mathrm{SO}(4,2) \subset S O(10,2)$ reduction

$$
\gamma=-\frac{\Delta^{(8)}}{c} \frac{1}{(j+1+m)_{6}}
$$

3. IOD dilaton correlator generates all KK correlators

$$
\begin{aligned}
\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \bar{\phi}\left(w_{3}\right) \bar{\phi}\left(w_{4}\right)\right\rangle_{10} & \equiv \frac{G_{10}\left(u_{10}, v_{10}\right)}{\left(\left(x_{12}^{2}-y_{12}^{2}\right)\left(x_{34}^{2}-y_{34}^{2}\right)\right)^{4}} \\
& =\sum_{p, q, r, s} y_{1}^{p} y_{2}^{q} y_{3}^{r} y_{4}^{s}\left\langle O^{p} O^{q} O^{r} O^{s}\right\rangle
\end{aligned}
$$

3* To get a given <OpOqOrOs>: take terms with correct exponent of R-symmetry variables y's

$$
\begin{aligned}
\tilde{H}_{p_{1} p_{2} p_{3} p_{4}}(u, v, \sigma, \tau)= & \oint \prod_{i=1}^{4}\left[\frac{d a_{i} a_{i}^{1-p_{i}}}{2 \pi i}\right] \frac{(u / \sigma)^{\frac{p_{1}+p_{2}}{2}}-2}{\left(1-\frac{\sigma}{u} a_{1} a_{2}\right)^{4}\left(1-a_{3} a_{4}\right)^{4}} \\
& \times G_{10}\left(u \frac{\left(1-\frac{\sigma}{u} a_{1} a_{2}\right)\left(1-a_{3} a_{4}\right)}{\left(1-a_{1} a_{3}\right)\left(1-a_{2} a_{4}\right)}, v \frac{\left(1-\frac{\tau}{v} a_{2} a_{3}\right)\left(1-a_{1} a_{4}\right)}{\left(1-a_{1} a_{3}\right)\left(1-a_{2} a_{4}\right)}\right)
\end{aligned}
$$

predicts differential relations:

$$
\begin{aligned}
& \mathcal{D}_{2222}=1, \\
& \mathcal{D}_{2332}=-\frac{\sqrt{u}}{\sqrt{\sigma}} \tau \partial_{v}, \\
& \mathcal{D}_{2233}=4-u \partial_{u}, \\
& \mathcal{D}_{3333}=16-8 u \partial_{u}+\frac{u+\sigma}{\sigma}\left(u \partial_{u}\right)^{2}+2 \frac{u}{\sigma} u \partial_{u} v \partial_{v}+\frac{u(v+\tau)}{\sigma v}\left(v \partial_{v}\right)^{2} .
\end{aligned}
$$

$$
\tilde{H}_{p q r s}=\mathcal{D}_{p q r s} \tilde{H}_{2222}
$$

The correct guess is tricky in the details.
([L]=4: like IOD free field)
(4D) correlator of Lagrangians has 8-derivative Casimir

$$
\langle\mathcal{L} \mathcal{L} \overline{\mathcal{L}} \overline{\mathcal{L}}\rangle^{(4)}=\Delta^{(8)} H
$$

(IOD) dilaton amplitude is s^{4} times conformal

$$
A^{(10)}=8 \pi G_{N} s^{4} \times \frac{1}{s t u}
$$

successful guess needs $\Delta^{(8)} \leftrightarrow(s / 4)^{4}$, so $H^{\text {tree }} \leftrightarrow 1 /(s t u)$

complete agreement between all methods!

Further implications of IOD conformal symmetry:
4. simple Mellin transform of correlators:

$$
M_{p q r s}(s, t) \sim \sum \frac{1 /(i!j!k!\ell!m!n!)}{(s-i)(t-j)(u-k)}
$$

5. Proof reduced to group theory: check poles of dDisc

$$
\left.\tilde{H}_{p q r s}^{(1)}\right|_{v-\text { poles }} \stackrel{?}{=} \mathcal{D}_{p q r s}\left[-\frac{2 u^{4} \log u}{(1-u)^{3} v}-\frac{u^{3}(1+u)}{(1-u)^{2} v}\right] \quad \begin{gathered}
\text { checked } \\
\text { to } \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s} \sim 10
\end{gathered}
$$

6. Double-trace mixing diagonalized by IOD blocks

6* Explicit formula for leading-log at each loop order:

$$
\left.\mathcal{H}_{p q r s}^{(k)}(z, \bar{z}, \alpha, \bar{\alpha})\right|_{\log ^{k} u}=\left[\Delta^{(8)}\right]^{k-1} \cdot \mathcal{D}_{p q r s} \cdot \mathcal{D}_{(3)} \cdot h^{(k)}(z)
$$

$$
h^{(k)}(z) \equiv \frac{1}{k!}\left(\frac{-1}{2}\right)^{k} \sum_{\ell=0, \text { even }}^{\infty} \frac{960 \Gamma(j+1) \Gamma(j+4)}{\Gamma(2 j+7)} \frac{1}{\left[(\ell+1)_{6}\right]^{k-1}} z^{j+1}{ }_{2} F_{1}(j+1, j+4,2 j+8, z) .
$$

Example:

$$
\begin{aligned}
h^{(2)}(z)= & \frac{\operatorname{Li}_{2}(z)-(1-z)^{5} \operatorname{Li}_{2}(z /(1-z))}{4 z^{5}}-\frac{(1-z)\left(2 z^{2}-7 z+7\right) \log (1-z)}{8 z^{4}} \\
& +\frac{(z-2)(1-z)}{z^{3}}+\frac{235}{576} \frac{z-2}{z} .
\end{aligned}
$$

gives leading-log (logL+1) terms for all correlators

Generalizations I.

Correlator of tensor multiplets in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{K} 3$

$$
A^{(6)} \underbrace{\sim G_{N}^{(6)} \delta^{8}(Q) \times\left[\frac{1}{s}+\frac{1}{t}+\frac{1}{u}\right]}_{\substack{\text { dimensionless } \\ \text { 'coupling' }}}
$$

Also, All S3 harmonics packaged together!
(what about stress-tensor?)

Generalization 2: stringy corrections?

22pp in Mellin space:
[from flat space+SUSY localization]

$$
\begin{aligned}
& \mathcal{M}_{p}(s, t)=\frac{4 p}{\Gamma(p-1)} \frac{1}{c}\left[\frac{1}{(s-2)(t-p)(u-p)}+\frac{(p+1)_{3}}{4} \zeta(3) \frac{1}{\lambda^{3 / 2}}\right. \\
&+\frac{(p+1)_{5}}{32} \zeta(5)\left[s^{2}+t^{2}+u^{2}+\frac{2 p(p-2)}{p+5} s+\left(-2 p^{2}+\frac{50+20 p(p+2)}{(p+4)(p+5)}\right)\right] \frac{1}{\lambda^{5 / 2}} \\
&+\cdots]+O\left(c^{-2}\right) . \\
& \text { [Alday, Bissi\&Perlmutter; }
\end{aligned}
$$

only $\mathrm{j}_{10}=0$ (or 2) eigenvalues change, not eigenvectors!!

$$
\begin{aligned}
\gamma=-\frac{\Delta^{(8)}}{c} & \frac{1}{(j}+\begin{aligned}
(1+m)_{6} & \frac{\lambda^{-3 / 2}}{c} \delta_{j, 0} \delta_{m, 0} B_{4}(\tau) \\
& +\frac{\lambda^{-5 / 2}}{c}\left(\delta_{j+m, 2} B_{5}(\tau)+\left(\delta_{j+m, 0} B_{5}^{\prime}(\tau)\right)+\ldots\right.
\end{aligned}
\end{aligned}
$$

(Suggestive of 4- and 6-order Casimir acting on IOD object?)

Summary

-Studied double-trace mixing in strongly coupled $\mathrm{N}=4$ SYM using Lorentzian inversion formula
-SO $(10,2)$ symmetry: formula for all spherical harmonics!
-Leading logs to all orders in $\mathrm{I} / \mathrm{N}_{\mathrm{c}}$
Further questions

- Simplify other $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$ computations?
- Higher loops/higher points?
[Goncalves, Pereira \& Zhou '19] cf: [Loebbert, Mojaza\& Plefka ' 18 : hidden conformal symmetry]
-Less conformal-looking theories: 6D (2,0), ABJM?

