Out of Equilibrium, Out of Time Order

R. Loganayagam

ICTS-TIFR,Bengaluru.
Work done/in progress with Felix M. Haehl(UBC), Prithvi Narayan(ICTS-TIFR),
Amin A. Nizami (ICTS-TIFR), Mukund Rangamani (UC Davis),...

[1701.02820,1706.08956,...] Strings 2017, Tel Aviv, Israel. 28th June, 2017.

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

- Why non-equilibrium quantum field theory ?
- Standard answer: that generic states in QFT are not in equilibrium.
- Why non-equilibrium QFT in Strings ?
- Some of the fundamental questions of our field are about non-equilibrium physics.
 - Gravity in de-Sitter
 - Black-hole evaporation and information paradox.
 - More generally, time dependent processes in String theory
- First Two are among the central unsolved problems in our field which are inherently non-equilibrium.
- Given the amount of thought and time devoted to them, it is worthwhile to ask what is the correct formalism to ask these Qs?

Out of Time Order (OTO) Correlators

Traditional QFT lays great emphasis on single time path-integrals/time-ordered correlators.

Why consider Out of Time Order Correlators(OTOCs)/path integrals with timefolds?

Figure : The timefolded contour necessary to compute the correlator with temporal ordering $t_1 > t_2$, $t_2 < t_3$, $t_3 > t_4$ and $t_4 < t_5$.

- Not the first time in this conference : See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference : See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

- Not the first time in this conference: See previous talks about how OTO correlators can be used to
 - diagnose chaos,
 - to study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.
- OTO correlators as being novel 'observables' in non-equilibrium QFT.
- Increasing realisation that OTOCs capture certain physical features of a system that are very difficult to extract via usual correlators.
- Picture not yet completely clear: but the relevant features seem to be usually non-local, information theoretic (like entanglement, scrambling, chaos etc.)
- Could very well be that there are many more and this list just the tip of an iceberg. Need for a systematic study and exploration

How do you compute OTOCs? OTO Path integrals

Generalised Schwinger/Keldysh(SK) Path integrals :

$$\mathcal{Z}_{k-\textit{oto}}[\mathcal{J}_{\alpha R}, \mathcal{J}_{\alpha L}]$$

$$= \text{Tr}\left(\cdots U[\mathcal{J}_{3R}](U[\mathcal{J}_{2L}])^{\dagger} U[\mathcal{J}_{1R}] \ \hat{\rho}_{\text{initial}} \ (U[\mathcal{J}_{1L}])^{\dagger} U[\mathcal{J}_{2R}](U[\mathcal{J}_{3L}])^{\dagger} \cdots \right) \ .$$

Figure: The k-OTO contour computing the out-of-time-ordered correlation functions. Timefolds of more and more depths required to compute highly out-of-time-order correlators.

• Ordering is such that the 1R contour is past-most, the 1L is future-most, and the inner contours with $\alpha > 1$ will nest in between in the order they appear, viz., $1R < 2L < 3R < \cdots < 3L < 2R < 1L$.

 Minimum timefold depth required to compute a OTO correlator = proper OTO number.

- A rough measure of how inaccessible the information is via usual correlators.
- Not quite in fact, a current question: Which OTOCs give genuinely new and useful information about the state? and When?

• Ordering is such that the 1R contour is past-most, the 1L is future-most, and the inner contours with $\alpha > 1$ will nest in between in the order they appear, viz., $1R < 2L < 3R < \cdots < 3L < 2R < 1L$.

- Minimum timefold depth required to compute a OTO correlator = proper OTO number.
- A rough measure of how inaccessible the information is via usual correlators.
- Not quite in fact, a current question: Which OTOCs give genuinely new and useful information about the state? and When?

• Ordering is such that the 1R contour is past-most, the 1L is future-most, and the inner contours with $\alpha > 1$ will nest in between in the order they appear, viz.,

$$1R < 2L < 3R < \cdots < 3L < 2R < 1L.$$

- Minimum timefold depth required to compute a OTO correlator = proper OTO number.
- A rough measure of how inaccessible the information is via usual correlators.
- Not quite in fact, a current question: Which OTOCs give genuinely new and useful information about the state? and When?

• Ordering is such that the 1R contour is past-most, the 1L is future-most, and the inner contours with $\alpha > 1$ will nest in between in the order they appear, viz., $1R < 2L < 3R < \cdots < 3L < 2R < 1L$.

 Minimum timefold depth required to compute a OTO correlator = proper OTO number.

- A rough measure of how inaccessible the information is via usual correlators.
- Not quite in fact, a current question : Which OTOCs give genuinely new and useful information about the state ? and When ?

- Let me number the operators in decreasing time-ordering.
- Will use a notation *n* denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324)? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324)? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324)? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324)? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{Q}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324) ? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324) ? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Let me number the operators in decreasing time-ordering.
- Will use a notation n denote $\widehat{\mathbb{O}}_n(t_n)$ where $t_1 > t_2 > \dots$
- For example, (1234) is the usual time-ordered correlator.
- (4321) is anti-time-ordered. Both can be computed with 1 time-fold and hence have proper OTO number 1 or proper 1-OTO.
- What about (1324) ? Way to do this is to count future turning point (FTP) operators.
- FTP operators are those with both their neighbours in the past, e.g., $\langle \hat{1}3\hat{2}4\rangle$
- So (1324) is actually proper 2-OTO.

- Any proper k-OTO correlator has k operators closest to future turning points and k - 1 operators close to past turning points
- Any proper k-OTOC thus has at least (2k-1) operators.
- A *n*-pt correlator can have at most proper OTO number Int $(\frac{n+1}{2})$.
- 2-OTO starts from 3-pt fns.
- 3-OTO starts from 5-pt fns. etc.

- Any proper k-OTO correlator has k operators closest to future turning points and k - 1 operators close to past turning points
- Any proper k-OTOC thus has at least (2k-1) operators.
- A *n*-pt correlator can have at most proper OTO number Int $(\frac{n+1}{2})$.
- 2-OTO starts from 3-pt fns.
- 3-OTO starts from 5-pt fns. etc.

- Any proper k-OTO correlator has k operators closest to future turning points and k - 1 operators close to past turning points
- Any proper k-OTOC thus has at least (2k 1) operators.
- A *n*-pt correlator can have at most proper OTO number Int $(\frac{n+1}{2})$.
- 2-OTO starts from 3-pt fns.
- 3-OTO starts from 5-pt fns. etc.

- Any proper k-OTO correlator has k operators closest to future turning points and k - 1 operators close to past turning points
- Any proper k-OTOC thus has at least (2k 1) operators.
- A *n*-pt correlator can have at most proper OTO number Int $(\frac{n+1}{2})$.
- 2-OTO starts from 3-pt fns.
- 3-OTO starts from 5-pt fns. etc.

- Any proper k-OTO correlator has k operators closest to future turning points and k - 1 operators close to past turning points
- Any proper k-OTOC thus has at least (2k 1) operators.
- A *n*-pt correlator can have at most proper OTO number Int $(\frac{n+1}{2})$.
- 2-OTO starts from 3-pt fns.
- 3-OTO starts from 5-pt fns. etc.

Many ways to think about OTOCs - all somewhat complementary

- (2k)ⁿ countour(C) correlators : good for path integral, Diagrammatics but 'Yuge' redundancies. One strategy may be to use Column Vector method .
- As n! Wightman(W) correlators (simplest)

$$G_{\sigma}(t_1, t_2, \dots, t_n) = \left\langle \widehat{\mathbb{O}}_{\sigma(1)} \, \widehat{\mathbb{O}}_{\sigma(2)} \, \dots \, \widehat{\mathbb{O}}_{\sigma(n)} \right\rangle, \qquad \sigma \in S_n,$$

Complicated diagrammatics. Long answers mixing up all sorts of physics.

As 2ⁿ⁻² n! nested(N) correlators involving (anti-)commutators (may bring out causal features, discontinuities etc (cf, Caron-Huot's talk))

$$[\{[\widehat{\mathbb{Q}}_1,\widehat{\mathbb{Q}}_2],\widehat{\mathbb{Q}}_3\},\cdots],$$

Will abbreviate this to [123₊...] in the following. Many redundancies (generalised Jacobis) - can be alleviated by a clever basis choice.

- Many ways to think about OTOCs all somewhat complementary
 - (2k)ⁿ countour(C) correlators : good for path integral, Diagrammatics but 'Yuge' redundancies. One strategy may be to use Column Vector method .
 - ② As n! Wightman(W) correlators (simplest)

$$G_{\sigma}(t_1, t_2, \dots, t_n) = \left\langle \widehat{\mathbb{O}}_{\sigma(1)} \, \widehat{\mathbb{O}}_{\sigma(2)} \, \dots \, \widehat{\mathbb{O}}_{\sigma(n)} \right\rangle, \qquad \sigma \in S_n,$$

Complicated diagrammatics. Long answers mixing up all sorts of physics.

As 2ⁿ⁻² n! nested(N) correlators involving (anti-)commutators (may bring out causal features, discontinuities etc (cf, Caron-Huot's talk))

$$\left[\{[\widehat{\mathbb{O}}_1,\widehat{\mathbb{O}}_2],\widehat{\mathbb{O}}_3\},\cdots\right],$$

Will abbreviate this to [123₊...] in the following. Many redundancies (generalised Jacobis) - can be alleviated by a clever basis choice.

- Many ways to think about OTOCs all somewhat complementary
 - (2k)ⁿ countour(C) correlators : good for path integral, Diagrammatics but 'Yuge' redundancies. One strategy may be to use Column Vector method .
 - As n! Wightman(W) correlators (simplest)

$$G_{\sigma}(t_1, t_2, \dots, t_n) = \left\langle \widehat{\mathbb{O}}_{\sigma(1)} \, \widehat{\mathbb{O}}_{\sigma(2)} \, \dots \, \widehat{\mathbb{O}}_{\sigma(n)} \right\rangle, \qquad \sigma \in S_n,$$

Complicated diagrammatics. Long answers mixing up all sorts of physics.

As 2ⁿ⁻² n! nested(N) correlators involving (anti-)commutators (may bring out causal features, discontinuities etc (cf, Caron-Huot's talk))

$$[\{[\widehat{\mathbb{O}}_1,\widehat{\mathbb{O}}_2],\widehat{\mathbb{O}}_3\},\cdots]\,,$$

Will abbreviate this to $[123_+ \ldots]$ in the following. Many redundancies (generalised Jacobis) - can be alleviated by a clever basis choice.

- Many ways to think about OTOCs all somewhat complementary
 - (2k)ⁿ countour(C) correlators : good for path integral, Diagrammatics but 'Yuge' redundancies. One strategy may be to use Column Vector method .
 - As n! Wightman(W) correlators (simplest)

$$G_{\sigma}(t_1, t_2, \dots, t_n) = \left\langle \widehat{\mathbb{O}}_{\sigma(1)} \, \widehat{\mathbb{O}}_{\sigma(2)} \, \dots \, \widehat{\mathbb{O}}_{\sigma(n)} \right\rangle, \qquad \sigma \in S_n,$$

Complicated diagrammatics. Long answers mixing up all sorts of physics.

As 2ⁿ⁻² n! nested(N) correlators involving (anti-)commutators (may bring out causal features, discontinuities etc (cf, Caron-Huot's talk))

$$[\{[\widehat{\mathbb{O}}_1,\widehat{\mathbb{O}}_2],\widehat{\mathbb{O}}_3\},\cdots],$$

Will abbreviate this to $[123_+\ldots]$ in the following. Many redundancies (generalised Jacobis) - can be alleviated by a clever basis choice.

- How many Wightman n-pt fns are proper q-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory? OTO fluid dynamics?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

- How many Wightman n-pt fns are proper q-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory ? OTO fluid dynamics ?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

- How many Wightman n-pt fns are proper q-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory ? OTO fluid dynamics ?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

- How many Wightman n-pt fns are proper q-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory ? OTO fluid dynamics ?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

- How many Wightman *n*-pt fns are proper *q*-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory ? OTO fluid dynamics ?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

- How many Wightman n-pt fns are proper q-OTO ? Say $g_{n,q}$. What is $g_{n,q}^{Eql}$?
- How to resolve redundancies in the nested correlators? Classifying $(2^{n-2} 1)n!$ sJacobi relations
- How to classify redundancies in contoue correlators?
 Answer decides the structure of EFTs.
- How is equilibrium/thermalisation characterised by OTOCs
 ? OTO fluctuation dissipation theorem ?
- Is there a OTO kinetic theory ? OTO fluid dynamics ?
- How do we set up experiments to measure OTOCs? How does OTO structure of the environment affect a quantum system?

Number of Wightman n-pt fns that are proper q-OTO

$$egin{aligned} g_{n,q} &= ext{Coefficient of } \mu^q ext{ in } \mathcal{G}_n(\mu) \ \mathcal{G}_n(\mu) &\equiv \left(2\sqrt{1-\mu}
ight)^{n+1} ext{Li}_{-n} \Big(rac{2}{1+\sqrt{1-\mu}}-1\Big) \end{aligned}$$

$$\operatorname{Li}_{-n}(z) = \left(z \frac{\partial}{\partial z}\right)^n \frac{z}{1 - z}$$

- To count it, realise that proper OTO number is decided by counting turning point operators.
- This reduces the problem to that of counting n-permutations with q maxima.
- An interesting combinatorics problem with the above generating fn.

Number of Wightman n-pt fns that are proper q-OTO

$$egin{aligned} g_{n,q} &= ext{Coefficient of } \mu^q ext{ in } \mathcal{G}_n(\mu) \ \mathcal{G}_n(\mu) &\equiv \left(2\sqrt{1-\mu}
ight)^{n+1} ext{Li}_{-n} \Big(rac{2}{1+\sqrt{1-\mu}}-1\Big) \end{aligned}$$

$$\operatorname{Li}_{-n}(z) = \left(z \frac{\partial}{\partial z}\right)^n \frac{z}{1 - z}$$

- To count it, realise that proper OTO number is decided by counting turning point operators.
- This reduces the problem to that of counting n-permutations with q maxima.
- An interesting combinatorics problem with the above generating fn.

Number of Wightman n-pt fns that are proper q-OTO

$$egin{aligned} g_{n,q} &= ext{Coefficient of } \mu^q ext{ in } \mathcal{G}_n(\mu) \ \mathcal{G}_n(\mu) &\equiv \left(2\sqrt{1-\mu}
ight)^{n+1} ext{Li}_{-n} \Big(rac{2}{1+\sqrt{1-\mu}}-1\Big) \end{aligned}$$

$$\operatorname{Li}_{-n}(z) = \left(z \frac{\partial}{\partial z}\right)^n \frac{z}{1 - z}$$

- To count it, realise that proper OTO number is decided by counting turning point operators.
- This reduces the problem to that of counting n-permutations with q maxima.
- An interesting combinatorics problem with the above generating fn.

Number of Wightman n-pt fns that are proper q-OTO

$$egin{aligned} g_{n,q} &= ext{Coefficient of } \mu^q ext{ in } \mathcal{G}_n(\mu) \ \mathcal{G}_n(\mu) &\equiv \left(2\sqrt{1-\mu}
ight)^{n+1} ext{Li}_{-n} \Big(rac{2}{1+\sqrt{1-\mu}}-1\Big) \end{aligned}$$

$$\operatorname{Li}_{-n}(z) = \left(z \frac{\partial}{\partial z}\right)^n \frac{z}{1 - z}$$

- To count it, realise that proper OTO number is decided by counting turning point operators.
- This reduces the problem to that of counting n-permutations with q maxima.
- An interesting combinatorics problem with the above generating fn.

- Two ways to add a future nth operator without increasing proper OTO number
 - Start with (n-1)-point correlator whose proper OTO number is less than q and then increase it. Done by an insertion in n intervals that exist between previous (n-1) insertions.e.g., $\langle 432\hat{1} \rangle \mapsto \langle \hat{4}532\hat{1} \rangle$
 - The second way is to start with a proper q-O1O (n-1)-point correlator and add an operator without increasing the proper OTO number.

 Done by inserting n^{th} operator just before or just after one of the q future turning point operators. e.g., $\langle 432\hat{1} \rangle \mapsto \langle 5432\hat{1} \rangle$
- This gives

$$\sum_{j=1}^{q} g_{n,j} = n \sum_{j=1}^{q-1} g_{n-1,j} + (2q)g_{n-1,q}$$
 (1)

- Two ways to add a future nth operator without increasing proper OTO number
 - Start with (n-1)-point correlator whose proper OTO number is less than q and then increase it. Done by an insertion in n intervals that exist between previous (n-1) insertions.e.g., $\langle 432\hat{1} \rangle \mapsto \langle \hat{4}532\hat{1} \rangle$
 - The second way is to start with a proper q-OTO (n-1)-point correlator and add an operator without increasing the proper OTO number.

 Done by inserting n^{th} operator just before or just after one of the q future turning point operators. e.g., $\langle 432\hat{1} \rangle \mapsto \langle 5432\hat{1} \rangle$
- This gives

$$\sum_{j=1}^{q} g_{n,j} = n \sum_{j=1}^{q-1} g_{n-1,j} + (2q)g_{n-1,q}$$
 (1)

- Two ways to add a future nth operator without increasing proper OTO number
 - Start with (n-1)-point correlator whose proper OTO number is less than q and then increase it. Done by an insertion in n intervals that exist between previous (n-1) insertions.e.g., $\langle 432\hat{1} \rangle \mapsto \langle \hat{4}532\hat{1} \rangle$
 - The second way is to start with a proper q-OTO (n-1)-point correlator and add an operator without increasing the proper OTO number. Done by inserting n^{th} operator just before or just after one of the q future turning point operators. e.g., $\langle 432\hat{1}\rangle \mapsto \langle 5432\hat{1}\rangle$
- This gives

$$\sum_{j=1}^{q} g_{n,j} = n \sum_{j=1}^{q-1} g_{n-1,j} + (2q)g_{n-1,q}$$
 (1)

- Two ways to add a future nth operator without increasing proper OTO number
 - Start with (n-1)-point correlator whose proper OTO number is less than q and then increase it. Done by an insertion in n intervals that exist between previous (n-1) insertions.e.g., $\langle 432\hat{1} \rangle \mapsto \langle \hat{4}532\hat{1} \rangle$
 - 2 The second way is to start with a proper q-OTO (n-1)-point correlator and add an operator without increasing the proper OTO number.

 Done by inserting n^{th} operator just before or just after one of the q future turning point operators. e.g., $\langle 432\hat{1} \rangle \mapsto \langle 5432\hat{1} \rangle$
- This gives

$$\sum_{j=1}^{q} g_{n,j} = n \sum_{j=1}^{q-1} g_{n-1,j} + (2q)g_{n-1,q}$$
 (1)

$g_{n,q}$	<i>q</i> = 1	2	3
n = 1	1	0	0
2	2	0	0
3	4	2	0
4	8	16	0
5	16	88	16

Table: The decomposition of the n! Wightman basis correlators into the proper q-OTO correlators for low-lying values of n.

- These counts are useful, since they tell you how many correlators one has to compute before one is done say, diagrammatically.
- Many diagrammatic computations are actually redundant!

$g_{n,q}$	<i>q</i> = 1	2	3
<i>n</i> = 1	1	0	0
2	2	0	0
3	4	2	0
4	8	16	0
4 5	16	88	16

Table: The decomposition of the n! Wightman basis correlators into the proper q-OTO correlators for low-lying values of n.

- These counts are useful, since they tell you how many correlators one has to compute before one is done say, diagrammatically.
- Many diagrammatic computations are actually redundant!

Counting proper q OTOC in thermal state

$\mathcal{G}_{n,q}^{Eq}$	<i>q</i> = 1	2	3
<i>n</i> = 1	1	0	0
2	1	0	0
3	2	0	0
4	4	2	0
5	8	16	0

Table : Same as before but in Equilibrium.

- Things simplify in equilibrium: \(\hat{1}423\rangle\) and \(\hat{1}324\rangle\) are the only independent 2-OTOs till 4-pts.
- The 3-pt 2-OTOs contain no novel information in equilibrium. (Measure of thermalisation?)
- Note that the rows here add upto (n-1)!.

Counting proper q OTOC in thermal state

$g_{n,q}^{Eq}$	<i>q</i> = 1	2	3
<i>n</i> = 1	1	0	0
2	1	0	0
3	2	0	0
4	4	2	0
5	8	16	0

Table: Same as before but in Equilibrium.

- Things simplify in equilibrium: (1423) and (1324) are the only independent 2-OTOs till 4-pts.
- The 3-pt 2-OTOs contain no novel information in equilibrium. (Measure of thermalisation ?)
- Note that the rows here add upto (n-1)!.

Counting proper q OTOC in thermal state

$g_{n,q}^{Eq}$	<i>q</i> = 1	2	3
<i>n</i> = 1	1	0	0
2	1	0	0
3	2	0	0
4	4	2	0
5	8	16	0

Table : Same as before but in Equilibrium.

- Things simplify in equilibrium: (1423) and (1324) are the only independent 2-OTOs till 4-pts.
- The 3-pt 2-OTOs contain no novel information in equilibrium. (Measure of thermalisation?)
- Note that the rows here add upto (n-1)!.

- The reduction in the thermal state is due to periodicity in imaginary time. Let n_{β} represent the operator shifted in time by $-i\beta$.
- We can then write

$$\langle 12 \rangle = \langle 2_{\beta} 1 \rangle = \langle 1_{\beta} 2_{\beta} \rangle$$

$$\langle 12_{\beta} 3 \rangle = \langle 3_{\beta} 12_{\beta} \rangle, \ \langle 21_{\beta} 3 \rangle = \langle 3_{\beta} 21_{\beta}$$

- Great simplification occurs in finite temperature (say in deriving fluctuation disiipation theorem) by moving to general OTO correlators (as opposed to usual discussions tied to Schwinger-Keldysh contour for 1-OTOs).
- The euclidean periodicity (KMS) relates some proper q-OTO Wightman functions with proper (q + 1)-OTO correlators.

- The reduction in the thermal state is due to periodicity in imaginary time. Let n_{β} represent the operator shifted in time by $-i\beta$.
- We can then write

$$\begin{split} \langle \mathbf{12} \rangle &= \langle \mathbf{2}_{\beta} \mathbf{1} \rangle = \langle \mathbf{1}_{\beta} \mathbf{2}_{\beta} \rangle \\ \langle \mathbf{12}_{\beta} \mathbf{3} \rangle &= \langle \mathbf{3}_{\beta} \mathbf{12}_{\beta} \rangle \,, \, \, \langle \mathbf{21}_{\beta} \mathbf{3} \rangle = \langle \mathbf{3}_{\beta} \mathbf{21}_{\beta} \rangle \end{split}$$

- Great simplification occurs in finite temperature (say in deriving fluctuation disiipation theorem) by moving to general OTO correlators (as opposed to usual discussions tied to Schwinger-Keldysh contour for 1-OTOs).
- The euclidean periodicity (KMS) relates some proper q-OTO Wightman functions with proper (q + 1)-OTO correlators.

- The reduction in the thermal state is due to periodicity in imaginary time. Let n_{β} represent the operator shifted in time by $-i\beta$.
- We can then write

$$\begin{array}{l} \langle 12 \rangle = \langle 2_{\beta} 1 \rangle = \langle 1_{\beta} 2_{\beta} \rangle \\ \langle 12_{\beta} 3 \rangle = \langle 3_{\beta} 12_{\beta} \rangle, \ \langle 21_{\beta} 3 \rangle = \langle 3_{\beta} 21_{\beta} \rangle \end{aligned}$$

- Great simplification occurs in finite temperature (say in deriving fluctuation disiipation theorem) by moving to general OTO correlators (as opposed to usual discussions tied to Schwinger-Keldysh contour for 1-OTOs).
- The euclidean periodicity (KMS) relates some proper q-OTO Wightman functions with proper (q + 1)-OTO correlators.

- The reduction in the thermal state is due to periodicity in imaginary time. Let n_{β} represent the operator shifted in time by $-i\beta$.
- We can then write

$$\begin{array}{l} \langle \mathbf{12} \rangle = \langle \mathbf{2}_{\beta} \mathbf{1} \rangle = \langle \mathbf{1}_{\beta} \mathbf{2}_{\beta} \rangle \\ \langle \mathbf{12}_{\beta} \mathbf{3} \rangle = \langle \mathbf{3}_{\beta} \mathbf{12}_{\beta} \rangle, \ \langle \mathbf{21}_{\beta} \mathbf{3} \rangle = \langle \mathbf{3}_{\beta} \mathbf{21}_{\beta} \rangle \end{aligned}$$

- Great simplification occurs in finite temperature (say in deriving fluctuation disiipation theorem) by moving to general OTO correlators (as opposed to usual discussions tied to Schwinger-Keldysh contour for 1-OTOs).
- The euclidean periodicity (KMS) relates some proper q-OTO Wightman functions with proper (q + 1)-OTO correlators.

General FDTs

 FDTs arise by writing thermal Wightman correlators in terms of commutators. For example,

$$\begin{split} \langle 12 \rangle &= -\,\mathfrak{f}_2[12]\;. \\ \langle 123 \rangle &= \mathfrak{f}_2\mathfrak{f}_3[123] + (1+\mathfrak{f}_1)(1+\mathfrak{f}_2)[321] \\ \langle 1234 \rangle &= (1+\mathfrak{f}_1)\,\mathfrak{f}_{3,4} \bigg\{ \mathfrak{f}_4[1234] + (1+\mathfrak{f}_3)\,[1243] \bigg\} \\ &\quad + (1+\mathfrak{f}_1) \, \bigg\{ \, (1+\mathfrak{f}_{2,4})\,\mathfrak{f}_4[1324] + \mathfrak{f}_{2,4}\,(1+\mathfrak{f}_2)\,[1342] \bigg\} \\ &\quad + (1+\mathfrak{f}_1)\, \big(1+\mathfrak{f}_{2,3}\big) \, \bigg\{ \mathfrak{f}_3[1423] + (1+\mathfrak{f}_2)\,[1432] \bigg\} \end{split}$$

 This is useful since the full commutators are often simpler expressions than the Wightman correlators themselves (e.g., in harmonic oscillator).

General FDTs

 FDTs arise by writing thermal Wightman correlators in terms of commutators. For example,

$$\begin{split} \langle 12 \rangle &= -\,\mathfrak{f}_2[12] \;. \\ \langle 123 \rangle &= \mathfrak{f}_2\mathfrak{f}_3[123] + (1+\mathfrak{f}_1)(1+\mathfrak{f}_2)[321] \\ \langle 1234 \rangle &= (1+\mathfrak{f}_1)\,\mathfrak{f}_{3,4} \bigg\{ \mathfrak{f}_4[1234] + (1+\mathfrak{f}_3)\,[1243] \bigg\} \\ &\quad + (1+\mathfrak{f}_1) \, \bigg\{ \, (1+\mathfrak{f}_{2,4})\,\mathfrak{f}_4[1324] + \mathfrak{f}_{2,4}\,(1+\mathfrak{f}_2)\,[1342] \bigg\} \\ &\quad + (1+\mathfrak{f}_1)\, \big(1+\mathfrak{f}_{2,3}\big) \, \bigg\{ \mathfrak{f}_3[1423] + (1+\mathfrak{f}_2)\,[1432] \bigg\} \end{split}$$

 This is useful since the full commutators are often simpler expressions than the Wightman correlators themselves (e.g., in harmonic oscillator).

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

- What we have done is to begin a systematic study of OTO correlators.
- How much/what new information they can give? is the central question.
- Many equilibrium relations like FDTs for higher point functions seem to enormously simplify once one expands the formalism to include OTOs
- may be an indication that it is the right way to think of thermalisation?
- Many generalisations to be made, formalisms to be developed, computations to be done.
- E.g., can one use the relations we uncovered to set up a practical diagrammatics at finite T?
- To develop an OTO kinetic theory? OTO effective field theories?

Thank you!