Six-Dimensional $(2,0)$ Scattering Amplitudes: The M5 Brane and IIB Supergravity on $K 3$

Matthew Heydeman

Caltech

June 9 - Strings 2019 Gong Show

Based on [1812.06111] with John H. Schwarz, Congkao Wen, Shun-Qing Zhang

Introduction and Summary

- We considered tree amplitudes in various supersymmetric 6D QFT's and gravity using spinor helicity, on-shell superspace, and twistor string techniques.

Introduction and Summary

- We considered tree amplitudes in various supersymmetric 6D QFT's and gravity using spinor helicity, on-shell superspace, and twistor string techniques.
- Focusing on perturbative (not strongly coupled, conformal) 6D $(2,0)$ supersymmetric theories, we constructed explicit expressions for low-point amplitudes and worldsheet integral formulas for n-point amplitudes. 'Bootstrap' methods instead of Feynman rules circumvent the usual difficulty of self-dual tensors of the $U(1) \mathrm{M} 5$-brane DBI theory and IIB supergravity on $K 3$.

Introduction and Summary

- We considered tree amplitudes in various supersymmetric 6D QFT's and gravity using spinor helicity, on-shell superspace, and twistor string techniques.
- Focusing on perturbative (not strongly coupled, conformal) 6D $(2,0)$ supersymmetric theories, we constructed explicit expressions for low-point amplitudes and worldsheet integral formulas for n-point amplitudes. 'Bootstrap' methods instead of Feynman rules circumvent the usual difficulty of self-dual tensors of the $U(1) \mathrm{M} 5$-brane DBI theory and IIB supergravity on $K 3$.
- Gives an S-matrix definition of these well-known but subtle theories. Understand interactions of tensors, symmetry breaking, the $K 3$ moduli space, and webs of dualities in lower dimensions.

6D Spinor Helicity and On-Shell SUSY

- Momentum vectors can be described as bispinors of $\operatorname{Spin}(5,1) \sim S U^{*}(4), p^{\mu} \sim p^{A B}$ with $A, B=1, \ldots, 4$.
- Little group $=S U(2) \times S U(2) ; a, \hat{a}=1,2$. Introduce spinors $\lambda_{i a}^{A}$:

On-shell momentum for particle i :

$$
p_{i}^{A B}=\left\langle\lambda_{i}^{A} \lambda_{i}^{B}\right\rangle=\epsilon_{a b} \lambda_{i}^{A, a} \lambda_{i}^{B, b}=\lambda_{i}^{A+} \lambda_{i}^{B-}-\lambda_{i}^{A-} \lambda_{i}^{B+} .
$$

- In 6D, may also have independent anti-chiral spinors $\tilde{\lambda}_{A \hat{a}}$.

6D Spinor Helicity and On-Shell SUSY

- Momentum vectors can be described as bispinors of $\operatorname{Spin}(5,1) \sim S U^{*}(4), p^{\mu} \sim p^{A B}$ with $A, B=1, \ldots, 4$.
- Little group $=S U(2) \times S U(2) ; a, \hat{a}=1,2$. Introduce spinors $\lambda_{i a}^{A}$:

On-shell momentum for particle i :

$$
p_{i}^{A B}=\left\langle\lambda_{i}^{A} \lambda_{i}^{B}\right\rangle=\epsilon_{a b} \lambda_{i}^{A, a} \lambda_{i}^{B, b}=\lambda_{i}^{A+} \lambda_{i}^{B-}-\lambda_{i}^{A-} \lambda_{i}^{B+} .
$$

- In 6D, may also have independent anti-chiral spinors $\tilde{\lambda}_{A \hat{a}}$.
- Also introduce Grassmann numbers $\eta_{i}^{I a}$, on-shell superfields $\Phi\left(\eta_{i}\right)$ so that:
$(2,0)$ SUSY + R-charges:

$$
\begin{aligned}
q_{i}^{A I} & =\left\langle\lambda_{i}^{A} \eta_{i}^{I}\right\rangle, \bar{q}_{i I}^{A}=\left\langle\lambda_{i}^{A} \frac{\partial}{\partial \eta_{i}^{I}}\right\rangle, U S p(4) \text { R-charges } \sim \eta^{2}, \eta \partial \eta, \partial \eta^{2} \\
\Phi\left(\eta_{i}\right) & =\phi+\eta_{a}^{I} \psi_{I}^{a}+\eta_{a}^{I} \eta^{a J} \phi_{I J}+\eta_{a}^{I} \eta_{b I} B^{a b}+\eta_{b}^{I} \eta_{J}^{b} \eta_{a}^{J} \bar{\psi}_{I}^{a}+\eta^{4} \bar{\phi} .
\end{aligned}
$$

Simplest Amplitudes

- Lorentz invariants (similar expressions for anti-chiral w/ [...]):

$$
\left\langle\lambda_{i}^{a} \lambda_{j}^{b} \lambda_{k}^{c} \lambda_{l}^{d}\right\rangle=\epsilon_{A B C D} \lambda_{i}^{A, a} \lambda_{j}^{B, b} \lambda_{k}^{C, c} \lambda_{l}^{D, d}
$$

Components of superamplitudes:

$$
A_{4}^{\mathrm{M} 5-\text { brane }}=\delta^{8}\left(\sum_{i} \lambda_{i a}^{A} \eta_{i}^{I a}\right) \equiv \delta^{8}(Q) \longleftrightarrow \mathcal{L}_{\mathrm{DBI}}=\mathcal{L}_{\text {free }}+H^{4}+\ldots
$$

- Amplitudes techniques allow for explicit computation of higher points without a Lagrangian (for example, 6 tensors):

$$
A_{6}\left(B_{++}\right)=\frac{1}{s_{123}}\left(\epsilon^{a b}\left\langle 1_{+} 2_{+} 3_{+} p a\right\rangle\left\langle p_{b} 4_{+} 5_{+} 6_{+}\right\rangle\right)^{2}+\text { perms }
$$

Allowed for many checks of leading $U(1)$ M5-brane; symmetries, soft theorems, reduction to $4 \mathrm{D} \mathcal{N}=4$, abelian E / M duality \ldots
$(2,0)$ Supergravity - Interacting tensor multiplets and supergravitons

- Comes from Type IIB Sugra on $K 3$ at 2-derivative order, away from strongly coupled cusps. There are $21(2,0)$ tensor multiplets required by $K 3 / a n o m a l y$ cancellation, so we must introduce an $S O(21), f=1 \ldots 21$ flavor symmetry.
- Ex: 2 supergravitons, 2 tensors:

$\underline{n \text {-point Amplitude as a Worldsheet Integral }}$

- Introduce n-punctured $\sigma_{i} \in \mathbb{C P}^{1}$, target space is the 6 D super-null cone parametrized by polynomial holomorphic maps $\mathcal{Z}(\sigma)=\left(\lambda_{a}^{A}(\sigma), \eta^{I a}(\sigma)\right)$. Amplitude may be written as a localized integral over these moduli, weighted by 'integrands'.

Schematic 6D Amplitude:

$$
\mathcal{A}_{6 D}=\int \frac{\prod d \sigma_{i} d \mathcal{Z}_{k}}{\operatorname{Vol}(G)} \prod_{i=1}^{n} \delta^{\prime}\left(\mathcal{Z}_{i}-\frac{\mathcal{Z}\left(\sigma_{i}\right)}{\prod_{j \neq i} \sigma_{i}-\sigma_{j}}\right) \times \mathcal{I}_{L} \mathcal{I}_{R}
$$

$\underline{n \text {-point Amplitude as a Worldsheet Integral }}$

- Introduce n-punctured $\sigma_{i} \in \mathbb{C P}^{1}$, target space is the 6 D super-null cone parametrized by polynomial holomorphic maps $\mathcal{Z}(\sigma)=\left(\lambda_{a}^{A}(\sigma), \eta^{I a}(\sigma)\right)$. Amplitude may be written as a localized integral over these moduli, weighted by 'integrands'.

Schematic 6D Amplitude:

$$
\mathcal{A}_{6 D}=\int \frac{\prod d \sigma_{i} d \mathcal{Z}_{k}}{\operatorname{Vol}(G)} \prod_{i=1}^{n} \delta^{\prime}\left(\mathcal{Z}_{i}-\frac{\mathcal{Z}\left(\sigma_{i}\right)}{\prod_{j \neq i} \sigma_{i}-\sigma_{j}}\right) \times \mathcal{I}_{L} \mathcal{I}_{R}
$$

- For $(2,0)$ Sugra w/ n_{1} supergravitons, n_{2} tensors, we find $\mathcal{I}_{L} \mathcal{I}_{R} \sim \operatorname{Pf} \mathcal{X}_{n_{2}} \times M_{\hat{a} \hat{b}}^{n_{1}}$. Here $\left[\mathcal{X}_{n}\right]_{i j}=\frac{\delta_{f_{i} f_{j}}}{\sigma_{i j}}$ is a sort of flavored fermion determinant and $M_{\hat{a} \hat{b}}^{n_{1}}$ is a determinant of graviton polarization spinors.
- The general formulas may be compared with the explicit expressions and pass all consistency checks.

K3 Moduli Space from Soft Theorems:

- Soft particles $p_{i} \rightarrow 0$ allow us to explore the scalar moduli space. Single soft amplitudes vanish (Adler's Zero for pions in G / H).

K3 Moduli Space from Soft Theorems:

- Soft particles $p_{i} \rightarrow 0$ allow us to explore the scalar moduli space. Single soft amplitudes vanish (Adler's Zero for pions in G / H).
- Double soft limits lead to flavor and R-symmetry rotated lower point amplitudes.

Expected $(2,0)$ Sugra $S O(21)$ Double Soft Theorem:

$$
A_{n}\left(\phi_{1}^{f_{1}}, \bar{\phi}_{2}^{f_{2}}, \ldots\right) \rightarrow \frac{1}{2} \sum_{i=3}^{n} \frac{p_{i} \cdot\left(p_{1}-p_{2}\right)}{p_{i} \cdot\left(p_{1}+p_{2}\right)} R_{i}^{f_{1} f_{2}} A_{n-2}
$$

K3 Moduli Space from Soft Theorems:

- Soft particles $p_{i} \rightarrow 0$ allow us to explore the scalar moduli space. Single soft amplitudes vanish (Adler's Zero for pions in G / H).
- Double soft limits lead to flavor and R-symmetry rotated lower point amplitudes.

Expected $(2,0)$ Sugra $S O(21)$ Double Soft Theorem:

$$
A_{n}\left(\phi_{1}^{f_{1}}, \bar{\phi}_{2}^{f_{2}}, \ldots\right) \rightarrow \frac{1}{2} \sum_{i=3}^{n} \frac{p_{i} \cdot\left(p_{1}-p_{2}\right)}{p_{i} \cdot\left(p_{1}+p_{2}\right)} R_{i}^{f_{1} f_{2}} A_{n-2}
$$

- Also find new mixed soft theorems when scalars form no singlets

New $(2,0)$ Mixed Flavor and R-symmetry Double Soft:

$$
A_{n}\left(\bar{\phi}_{1}^{f_{1}}, \phi_{2}^{f_{2}, I J}, \ldots\right) \rightarrow \sum_{i=3}^{n} \frac{p_{1} \cdot p_{2}}{p_{i} \cdot\left(p_{1}+p_{2}\right)} R_{i}^{f_{1} f_{2}} R_{i}^{I J} A_{n-2}
$$

- This allows us to recover the moduli space $\mathcal{M}_{\text {sugra }}=\frac{S O(5,21)}{S O(5) \times S O(21)}$!

Discussion:

- Main point: New perspective on perturbative 6D $(2,0)$ amplitudes, including both explicit and general formulas. These pass all consistency checks and circumvent the usual difficulties of these theories. Also connects with many other topics at this conference:
- New formula for 4D $\mathcal{N}=4$ supergravity amplitudes. Reduction of tensor and graviton multiplets implies this Sugra is consistent with Type II/Heterotic duality in 4D.
- Applications to $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times K 3$. Flat space limit of Mellin amplitudes \rightarrow Sugra amplitudes, leading to 2D CFT constraints.
- Possibility of extensions to more interesting $(1,0)$ supergravities with less SUSY and richer moduli spaces.
- Loops, higher dimension operators, and Coulomb branch amplitudes in 4/6D.

