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Introduction and Summary
• We considered tree amplitudes in various supersymmetric 6D

QFT’s and gravity using spinor helicity, on-shell superspace, and
twistor string techniques.

• Focusing on perturbative (not strongly coupled, conformal) 6D
(2, 0) supersymmetric theories, we constructed explicit
expressions for low-point amplitudes and worldsheet integral
formulas for n-point amplitudes. ‘Bootstrap’ methods instead of
Feynman rules circumvent the usual difficulty of self-dual tensors
of the U(1) M5-brane DBI theory and IIB supergravity on K3.

• Gives an S-matrix definition of these well-known but subtle
theories. Understand interactions of tensors, symmetry breaking,
the K3 moduli space, and webs of dualities in lower dimensions.
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6D Spinor Helicity and On-Shell SUSY
• Momentum vectors can be described as bispinors of
Spin(5, 1) ∼ SU∗(4), pµ ∼ pAB with A,B = 1, . . . , 4.

• Little group = SU(2)× SU(2); a,â = 1, 2. Introduce spinors λAia:

On-shell momentum for particle i:

pAB
i = ⟨λAi λBi ⟩ = ϵabλ

A,a
i λB,b

i = λA+
i λB−

i − λA−
i λB+

i .

• In 6D, may also have independent anti-chiral spinors λ̃Aâ.

• Also introduce Grassmann numbers ηIai , on-shell superfields
Φ(ηi) so that:

(2, 0) SUSY + R-charges:

qAI
i = ⟨λAi ηIi ⟩, q̄AiI = ⟨λAi

∂

∂ηIi
⟩, USp(4) R-charges ∼ η2, η∂η, ∂η2

Φ(ηi) = ϕ+ ηIaψ
a
I + ηIaη

aJϕIJ + ηIaηbIB
ab + ηIbη

b
Jη

J
a ψ̄

a
I + η4ϕ̄ .
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Simplest Amplitudes
• Lorentz invariants (similar expressions for anti-chiral w/ [. . . ]):

⟨λai λbjλckλdl ⟩ = ϵABCDλ
A,a
i λB,b

j λC,c
k λD,d

l ,

Components of superamplitudes:

AM5−brane
4 = δ8

(∑
i

λAiaη
Ia
i

)
≡ δ8(Q)←→ LDBI = Lfree +H4 + . . .

• Amplitudes techniques allow for explicit computation of higher
points without a Lagrangian (for example, 6 tensors):

A6(B++) =
1

s123

(
ϵab⟨1+ 2+ 3+ pa⟩⟨pb 4+ 5+ 6+⟩

)2
+ perms

Allowed for many checks of leading U(1) M5-brane; symmetries,
soft theorems, reduction to 4D N = 4, abelian E/M duality . . .
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(2, 0) Supergravity - Interacting tensor multiplets and supergravitons
• Comes from Type IIB Sugra on K3 at 2-derivative order, away

from strongly coupled cusps. There are 21 (2, 0) tensor multiplets
required by K3/anomaly cancellation, so we must introduce an
SO(21), f = 1 . . . 21 flavor symmetry.

• Ex: 2 supergravitons, 2 tensors:

Φf1

Φf2

Φâ3b̂3

Φâ4b̂4

Φf1

Φf2

Φâ3b̂3

Φâ4b̂4

Φf1

Φf2

Φâ3b̂3

Φâ4b̂4

A
(2,0)
2,2 = δ8(Q)

(
δf1f2

[1â12â23â34â4 ][1
â12â23b̂34b̂4 ]

s12 s23 s31

)
+ sym .
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n-point Amplitude as a Worldsheet Integral

• Introduce n-punctured σi ∈ CP1, target space is the 6D super-null
cone parametrized by polynomial holomorphic maps
Z(σ) = (λAa (σ), η

Ia(σ)). Amplitude may be written as a localized
integral over these moduli, weighted by ‘integrands’.

Schematic 6D Amplitude:

A6D =

∫ ∏
dσi dZk

Vol(G)

n∏
i=1

δ′

(
Zi −

Z(σi)∏
j ̸=i σi − σj

)
× ILIR

• For (2, 0) Sugra w/ n1 supergravitons, n2 tensors, we find

ILIR ∼ PfXn2 ×M
n1

âb̂
. Here [Xn]ij =

δfifj
σij

is a sort of flavored
fermion determinant and Mn1

âb̂
is a determinant of graviton

polarization spinors.
• The general formulas may be compared with the explicit

expressions and pass all consistency checks.
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âb̂
. Here [Xn]ij =

δfifj
σij

is a sort of flavored
fermion determinant and Mn1
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K3 Moduli Space from Soft Theorems:
• Soft particles pi → 0 allow us to explore the scalar moduli space.

Single soft amplitudes vanish (Adler’s Zero for pions in G/H).

• Double soft limits lead to flavor and R-symmetry rotated lower
point amplitudes.

Expected (2, 0) Sugra SO(21) Double Soft Theorem:

An(ϕ
f1
1 , ϕ̄

f2
2 , . . .)→

1

2

n∑
i=3

pi · (p1 − p2)
pi · (p1 + p2)

Rf1 f2
i An−2 .

• Also find new mixed soft theorems when scalars form no singlets

New (2, 0) Mixed Flavor and R-symmetry Double Soft:

An(ϕ̄
f1
1 , ϕ

f2,IJ
2 , . . .)→

n∑
i=3

p1 · p2
pi · (p1+p2)

Rf1f2
i RIJ

i An−2 .

• This allows us to recover the moduli spaceMSugra =
SO(5,21)

SO(5)×SO(21) !
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Discussion:
• Main point: New perspective on perturbative 6D (2, 0) amplitudes,

including both explicit and general formulas. These pass all
consistency checks and circumvent the usual difficulties of these
theories. Also connects with many other topics at this conference:

• New formula for 4D N = 4 supergravity amplitudes. Reduction of
tensor and graviton multiplets implies this Sugra is consistent with
Type II/Heterotic duality in 4D.

• Applications to AdS3 × S3 × K3. Flat space limit of Mellin
amplitudes→ Sugra amplitudes, leading to 2D CFT constraints.

• Possibility of extensions to more interesting (1, 0) supergravities
with less SUSY and richer moduli spaces.

• Loops, higher dimension operators, and Coulomb branch
amplitudes in 4/6D.

8 / 8


