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Introduction

QFT	is	usually	thought	of	as	an	RG	flow	connecting	a	UV	fixed	point	
to	an	IR	fixed	point	(which	may	be	empty).	It	is	defined	by	specifying	
the	UV	fixed	point	(a	CFT)	and	a	finite	set	of	parameters	that	can	be	
thought	of	as	coefficients	of	relevant	and	marginal	operators,	that	
describe	the	particular	RG	trajectory.	This	is	known	as	flowing	down	
the	RG.	



From	the	perspective	of	the	long	distance	theory,	the	RG	trajectory	
can	often	be	described	as	a	perturbation	of	the	IR	fixed	point	by	a	
set	of	irrelevant	operators.	However,	this	flow	up	the	RG	is	in	
general	on	a	very	different	footing	– it	does	not	correspond	to	a	
well	defined	QFT.	

The	basic	reason	is	that	there	is	an	infinite	number	of	different	RG	
trajectories	that	look	at	long	distances	like	a	particular	IR	fixed	
point	perturbed	by	a	finite	set	of	irrelevant	operators,	so	we	have	
to	supply	an	infinite	amount	of	data	to	specify	the	particular	RG	
trajectory	we	are	interested	in.	(This	is	related	to	the	irreversibility	
of	RG	flow)



All	this	has	an	analog	in	the	context	of	holography.	Relevant	
perturbations	of	string	theory	in	an	asymptotically	AdS spacetime
correspond	in	the	bulk	to	perturbations	that	do	not	modify	the	UV	
AdS asymptotics,	and	are	therefore	specified	by	a	finite	number	of	
parameters,	while	irrelevant	perturbations	change	the	geometry	in	
the	UV	and	thus	one	in	general	needs	an	infinite	number	of	
parameters	to	specify	the	new	geometry.	



In	this	talk	we	will	discuss	a	variation	on	this	theme.	It	was	inspired	
by	two	papers,	arXiv 1608.05534,	1608.05499,	which discussed	a	
perturbation	of	a	𝐶𝐹𝑇* by	an	irrelevant	operator	that	is	supposed	to	
be	better	behaved	than	the	general	case,	and	moreover	in	a	certain	
sense	be	solvable.	

I	will	next	briefly	review		their	results	and	then	discuss	a	holographic	
analog	of	their	system.	

Our	main	interest	in	these	systems	is	that	they	interpolate	between	
a	CFT	in	the	IR	and	a	system	with	a	Hagedorn	entropy	in	the	UV.	
Understanding	holography	for	this	case	better	is	thus	a	useful	step	
towards	extending	it	to	spacetimes with	other	asymptotics,	such	as	
flat	spacetime.	



𝑇𝑇+ deformation	of	𝐶𝐹𝑇*
We	start	with	a	two	dimensional	CFT,	and	add	to	the	Lagrangian
the	deformation

where	𝑇 and	𝑇+ are	the	holomorphic	and	anti-holomorphic	
components	of	the	stress	tensor.	
The	perturbing	operator	has	dimension	four,	therefore	the	
coupling	𝑡 has	units	of	length	squared.	At	distances	≫ 𝑡� the	
theory	approaches	the	original	CFT,	and	at	short	distances	one	in	
general	expects	the	description	to	break	down.
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�L = tT T̄ , (2.1)

where T and T̄ are the holomorphic and anti-holomorphic components of the stress tensor,

respectively, and the composite operator T T̄ is defined at finite coupling t as [8]

T T̄ (y) = lim
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�
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�
. (2.2)

⇥ is the trace of the stress tensor, related to T and T̄ by the conservation equations

@x̄T = @x⇥; @xT̄ = @x̄⇥. (2.3)

The operator T T̄ has dimension four. Hence the coupling t in (2.1) has units of length

squared; in particular, it is irrelevant (in the RG sense). The resulting theory approaches

the original CFT at long distances, whereas at short distances one in general expects the

theory to lose predictive power.

The authors of [4,5] used techniques from integrable field theory to study the defor-

mation (2.1). In particular, they calculated exactly the spectrum of the theory on a circle

of circumference R and found it to be

E(R, t) = �R

2t
+

r
R

2

4t2
+

4⇡

t
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24
) , (2.4)

where c is the central charge of the original CFT. The coupling t must be taken to be

positive for the theory to have a vacuum [4].

In the infrared limit t ! 0, (2.4) approaches the standard CFT result,

E(R, 0) =
4⇡

R

(h� c

24
), (2.5)

corresponding to a state1 with L

0

= L̄

0

= h. Equation (2.4) describes the change of the

energy of such a state as we turn on the perturbation. A few comments about (2.4) are in

order at this point:

1 In (2.4) we exhibited the result for states with h = h̄. The generalization to the case h 6= h̄

is known.

3



When	we	turn	on	t,	the	theory	breaks	conformal	symmetry.	The
authors	of	arXiv 1608.05534,	1608.05499	 show	that	if	one	defines
the	perturbation	𝑇	𝑇+ at	a	generic	point	along	the	RG	trajectory	as
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For	example,	starting	with	a	state	with	𝐿0 = 𝐿+0 = ℎ in	the	original
CFT,	which	corresponds	on	a	cylinder	with	circumference	R	to	a	
state	with	energy	

gives	rise	at	finite	t	to	

The	result	for	general	 ℎ, ℎ+ is	also	known.
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Consider,	for	example,	states	with	ℎ ≥ 𝑐/24.	

For	states	with	ℎ − 9
*:
≪ <=

>
one	has	𝐸 𝑅, 𝑡 ≃ 𝐸(𝑅, 0),	i.e.	their	

energies	are	not	influenced	by	the	perturbation.	

On	the	other	hand,	in	the	opposite	regime	ℎ − 9
*:
≫ <=

>
,	one	has	

instead	

The	crossover	between	the	two	regimes	is	at	𝐸 ∼ <
>
.
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In this note we will discuss the simplest example of a JJ deformation of a CFT. This

is of course very well understood, and our main e↵ort will go into understanding how such

deformations behave in AdS3/CFT2 duality. Here we will review the known properties

of the CFT story. To keep things simple, we will discuss the case where the currents

correspond to left and right-moving momentum of a scalar field on a circle. Thus, we

assume that our CFT has an S1 factor, labeled by a coordinate C which lives on a circle

of radius R,

C ⇠ C + 2⇡R (1.1) ccccc

In the CFT, C is a field C(x, x), with a Lagrangian of the form @C@C. The coe�cient is

fixed such that the propagator of C is � ln |x� y|2.
This model has left and right-moving U(1) currents

J(x) = i@CL; J(x) = i@CR (1.2) jjjjj

with C(x, x) = CL(x) + CR(x). These currents are normalized such that

J(x)J(y) =
1

(x� y)2
; J(x)J(y) =

1

(x� y)2
(1.3) levone

States charged under these currents correspond to vertex operators that carry momentum

and winding. The lowest such operators are

Op
L

,p
R

= eipL

C
L

+ip
R

C
R (1.4) opp

with

pL =
n

R
+

wR

2
, pR =

n

R
� wR

2
(1.5) pppbar

1



It	is	interesting	to	calculate	the	entropy	of	the	𝑇𝑇+ deformed	CFT.	
Since	above	we	only	computed	the	energies	of	the	states	of	the	
original	CFT	after	deformation,	calculating	their	entropy	only	gives
a	lower	bound	on	the	total	entropy	– there	could	be	additional	
states	in	the	deformed	theory	that	are	not	present	in	the	original
CFT,	e.g.	states	whose	energies	go	like	1/ 𝑡� ,	which	decouple	in
the	limit	𝑡 → 0.	



Anyway,	keeping	track	only	of	the	states	visible	in	the	IR	CFT	gives
an	entropy	that	behaves	like	

• for		𝐸 ≪ <
>

• for	𝐸 ≫ <
>

which	exhibits	a	crossover	from	2d	CFT	(Cardy)	behavior	at	low	
energies	to	Hagedorn	behavior	at	high	energies,	𝑆 = 𝛽I𝐸 ,	with

𝛽I =
2𝜋𝑐𝑡
3

�
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The	fact	that	the	high	energy	entropy	is	Hagedorn	implies	that	the	
UV	behavior	is	not	governed	by	a	fixed	point	of	the	RG.	It	is	an	
open	question	to	what	extent	the	description	above,	as	an	
irrelevant	deformation	of	an	IR	CFT,	gives	rise	to	a	well	defined	
quantum	theory,	and	if	not,	where	and	how	it	breaks	down.	

Partly	with	these	issues	in	mind,	we	will	ask	the	question	whether	
theories	of	the	sort	described	above	can	be	realized	in	the	context	
of	holography.	In	particular,	if	the	low	energy	CFT	has	an	AdS dual,	
can	we	realize	the	deformed	theory	by	perturbing	the	AdS dual?	



Holographic	perspective
One	way	to	realize	the	AdS dual	of	the	𝑇𝑇+ deformed	CFT	described	
above	is	to	start	with	an	𝐴𝑑𝑆$/𝐶𝐹𝑇* dual	pair,	construct	the	stress	
tensor	of	the	CFT	in	the	AdS language,	and	perform	the	
deformation.	Since	the	stress	tensor	is	a	``single	trace’’	operator,	
this	is	a	double	trace	deformation.	It	corresponds	to	changing	the	
boundary	conditions	for	bulk	fields	on	𝐴𝑑𝑆$.	

I	will	not	pursue	this	direction	here.	Instead,	I	will	show	that	there	
is	a	single	trace	deformation	that	shares	many	elements	with	the	
above	discussion.	I	will	next	describe	it	and	comment	on	some	of	
its	properties.	



One	of	the	interesting	properties	of	the	QFT	work	reviewed	above	is	
that	the	story	is	universal.	Indeed,	every	𝐶𝐹𝑇* can	be	deformed	in	
the	way	we	described.	

It	is	natural	to	ask	whether	there	is	a	similarly	universal	deformation	
of	string	theory	on	𝐴𝑑𝑆$ (with	NS	B-field).	The	answer	is	yes	– any	
theory	with	an	𝐴𝑑𝑆$ factor	contains	an	operator,	𝐷 𝑥 ,	constructed	
in	KS	(1999),	which	is	a	quasi-primary	of	the	spacetime Virasoro,	and	
has	the	same	OPE	with	the	spacetime stress	tensor	as	the	operator	
𝑇𝑇+ that	figured	in	our	previous	discussion.	

This	operator	is	constructed	as	follows:	



The	left-moving	SL(2,R)	worldsheet currents	can	be	combined	into
the	single	current	

Where	x=position	on	the	boundary,	z=position	on	the	worldsheet,
and	(𝐽O, 𝐽$, 𝐽P) give	rise	to	 𝐿OQ, 𝐿0, 𝐿Q in	the	spacetime CFT.	

The	left-moving	spacetime stress	tensor	takes	the	form	(in	the
bosonic	string)	

4. The T T̄ deformation in AdS

3

In order to make contact with the discussion of [4,5], we need to construct the T T̄

deformation in string theory on AdS

3

. One possibility is to use the vertex operator of the

stress tensor in [13], whose construction we will review shortly, and consider the double

trace deformation by the product of the vertex operators for T and T̄ . We will next argue

that there is also a single trace T T̄ deformation, which is easier to study in the bulk.

To understand it, it is useful to start with a brief review of the construction of the

stress tensor in [13].2 There are two observables that play a key role in this construction.

One is the current

J(x; z) = 2xJ
3

(z)� J

+(z)� x

2

J

�(z), (4.1)

which combines the SL(2, IR)L currents into a single object labeled by the auxiliary variable

x. This variable can be thought of as position on the boundary of AdS

3

. There is also a

right-moving analog of (4.1) with the opposite worldsheet and spacetime chirality J̄(x̄; z̄).

The second observable is

�h(x; z) =
1

⇡

✓
1

|� � x|2e� + e

��

◆
2h

, (4.2)

which is an eigenfunction of the Laplacian on AdS

3

, and gives rise in the quantum theory

to a primary of the worldsheet and spacetime Virasoro, with worldsheet dimension �h =

�̄h = �h(h� 1)/(k � 2) and spacetime dimension (h, h).

In terms of the operators (4.1), (4.2), the vertex operator of the spacetime stress-tensor

is given by

T (x) =
1

2k

Z
d

2

z(@xJ@x�1

+ 2@2

xJ�1

)J̄(x̄; z̄). (4.3)

As explained in [13], this operator is physical (i.e. BRST invariant), its spacetime scaling

dimension is (2, 0), it is holomorphic, @x̄T = 0 (as expected from the unitarity of the

spacetime CFT), and it satisfies the standard OPE algebra of the holomorphic stress-

tensor in the spacetime CFT

2

. The anti-holomorphic stress tensor T̄ (x̄) is constructed

similarly by flipping all the chiralities in (4.3), (x, z, J) $ (x̄, z̄, J̄).

The T T̄ deformation of [4,5] corresponds in terms of the above discussion to adding

to the worldsheet action the product of the vertex operators for T and T̄ . Since each of

2 For simplicity, we will discuss the construction in the bosonic string. The generalization to

the superstring is explained in [13].
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, (4.2)

which is an eigenfunction of the Laplacian on AdS

3

, and gives rise in the quantum theory

to a primary of the worldsheet and spacetime Virasoro, with worldsheet dimension �h =

�̄h = �h(h� 1)/(k � 2) and spacetime dimension (h, h).

In terms of the operators (4.1), (4.2), the vertex operator of the spacetime stress-tensor

is given by

T (x) =
1

2k

Z
d

2

z(@xJ@x�1

+ 2@2

xJ�1

)J̄(x̄; z̄). (4.3)

As explained in [13], this operator is physical (i.e. BRST invariant), its spacetime scaling

dimension is (2, 0), it is holomorphic, @x̄T = 0 (as expected from the unitarity of the

spacetime CFT), and it satisfies the standard OPE algebra of the holomorphic stress-

tensor in the spacetime CFT

2

. The anti-holomorphic stress tensor T̄ (x̄) is constructed

similarly by flipping all the chiralities in (4.3), (x, z, J) $ (x̄, z̄, J̄).

The T T̄ deformation of [4,5] corresponds in terms of the above discussion to adding

to the worldsheet action the product of the vertex operators for T and T̄ . Since each of

2 For simplicity, we will discuss the construction in the bosonic string. The generalization to

the superstring is explained in [13].
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The	operator	D(x)	takes	the	form	

This	operator	has	spacetime scaling	dimension	(2,2).	Hence	it	is	a	
supergravity	field.	It	is	essentially	the	massive	dilaton on	𝐴𝑑𝑆$.	In	
analogy	to	the	𝑇𝑇+ deformation	story,	one	can	ask	what	happens
when	one	adds	to	the	Lagrangian of	the	spacetime CFT	the	
irrelevant	operator	𝛿𝐿 = 𝜆𝐷 𝑥 .	

these vertex operators is given by an integral over the worldsheet, this leads to a non-local

worldsheet deformation, typical of double trace deformations in holography.

To construct the single trace deformation we will be interested in, we observe (following

[13]) that there is another vertex operator we can consider, that combines elements of the

constructions of T (4.3) and T̄ . That vertex operator is

D(x) =

Z
d

2

z(@xJ@x + 2@2

xJ)(@x̄J̄@x̄ + 2@2

x̄J̄)�1

. (4.4)

Since the left-moving part of the vertex operator (4.4) is the same as that of T (x) (4.3),

while its right-moving part is the same as that of T̄ , we know that from the point of view

of the spacetime Virasoro algebra it is a quasi-primary operator of dimension (2, 2). It is

natural to ask what is the spacetime interpretation of this vertex operator.

To answer this question it is useful to look back at the discussion of the previous

section, and in particular to recall that the spacetime CFT takes (at large p) the symmetric

product form (3.7). In terms of this structure, the stress tensor vertex operator (4.3)

corresponds to the sum of the stress tensors of the di↵erent factors in (3.7),

T (x) =
pX

i=1

Ti(x). (4.5)

It is a special case of (3.8), with the operator O(x) being the stress tensor of the CFT M.

In terms of the structure (3.7) there is a natural conjecture for the interpretation of

the operator D(x) (4.4) in the spacetime CFT,

D(x) = A

pX

i=1

Ti(x)T̄i(x̄), (4.6)

which again has the form (3.8), with O(x) ⇠ T (x)T̄ (x̄), the product of the holomorphic and

anti-holomorphic stress tensors in M. The constant A can be determined by computing

the OPE of T (x) (4.3) with D(y) (4.4). From the spacetime CFT we expect to get

T (x)D(y) =
AcM/2

(x� y)4
T̄ (ȳ) + · · · . (4.7)

On the worldsheet, this calculation can be done using the results of [13]. In addition to de-

termining the constant A, the structure of this OPE provides evidence for the identification

(4.6).
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This	corresponds	from	the	worldsheet point	of	view	to	adding	to	the
worldsheet action	the	vertex	operator	𝜆𝐷 𝑥 .	One	finds:

Thus,	the	irrelevant deformation	of	the	spacetime CFT	corresponds
on	the	worldsheet to	a	marginal	deformation.	Moreover,	this		is	a
current-current	deformation,	which	one	expects	to	be	exactly	
solvable.		

To	understand	the	physics	associated	with	this	deformation,	we	next
make	a	few	comments:

We can now perform the x integral in (4.10). Since the only quantity that depends

on x is �
1

, the integral we need to perform is
R
d

2

x�
1

(x; z). Plugging in the form of �
1

(4.2), we find an elementary integral, which gives a constant. Finally, we have

Z
d

2

xD(x, x̄) '
Z

d

2

zJ

�(z)J̄�(z̄), (4.12)

where we did not keep track of an overall multiplicative constant.

We conclude that the T T̄ deformation of the CFT M in (3.7) is described from the

bulk perspective by a J

�
J̄

� deformation of the SL(2, IR) CFT. In the next section we will

discuss this deformation of the bulk theory.

5. The J

�
J̄

�
deformation of AdS

3

In the previous section we argued that a particular T T̄ deformation (4.6) of the bound-

ary CFT (3.7) corresponding to an AdS

3

background in string theory is described in the

bulk by a deformation of the worldsheet theory by a term of the form

�L
ws

= �J

�(z)J̄�(z̄). (5.1)

In this section we will discuss some properties of this deformation.

The first notable property of the deformation (5.1) is that it is truly marginal on the

worldsheet. It might seem surprising at first glance that the irrelevant T T̄ deformation

of the spacetime theory corresponds on the worldsheet to a marginal one, but this is

exactly what we should expect. The fact that the worldsheet deformation is marginal is

the statement that we have a solution of the bulk string theory equations of motion for all

values of �. The bulk background dual to the T T̄ deformed theory (4.9) should of course

have this property.

The irrelevant nature of the T T̄ deformation must be reflected in the fact that the

e↵ect of the deformation (5.1) should increase in the UV, i.e. as we approach the boundary

of AdS
3

. As a simple first check, one can calculate the (spacetime) scaling dimension of

the coupling � in the boundary CFT. As mentioned earlier, the operators J� and J̄

� give

rise to the spacetime Virasoro generators L�1

and L̄�1

, respectively. Thus, the operator

J

�
J̄

� has spacetime scaling dimension (1, 1), and the corresponding coupling, � has scaling

dimension (�1,�1), in agreement with that of the coupling t in (2.1). Hence, we expect

this coupling to decrease in the infrared, and increase in the ultraviolet in the spacetime

theory.
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(1)	A	useful	description	of	this	theory	is	as	a	null	coset of	a	10+2	
dimensional	background.	For	example,	if	the	background	we	start
with	is	𝐴𝑑𝑆$×𝑆$×𝑇:,	the	deformed	theory	can	be	thought	of	as
follows.	We	start	with	the	background	

𝐴𝑑𝑆$×𝑆$×𝑇:×𝑅Q,Q

The	extra	𝑅Q,Q is	parametrized	by	the	coordinates	𝑥± = 𝑦 ± 𝜏,	while
the	𝐴𝑑𝑆$ is	parametrized	by	the	Poincare	coordinates	(𝜙, 𝛾, �̅�),	
where	 𝛾, �̅� are	coordinates	on	the	boundary.		



We	now	gauge	the	𝑈 1 * symmetry	that	acts	on	the	coordinates	
as	

The	background	associated	with	this	coset can	be	obtained	using
standard	techniques:	

To understand the geometry that we get by gauging (2.4) in (2.3), we start with the

sigma model on AdS3⇥R

1,1, which is described by the worldsheet Lagrangian add ls and

fix the next few equations

L = k(@�@�+ e

2�
@�@�) + @x

+
@x

�
. (2.5)

The coordinates � = �

1 � �

0, � = �

1 + �

0 parametrize the boundary of AdS3; x± = y ± t

are coordinates on IR1,1. The symmetry we would like to mod out by is

x

� ! x

� + ↵ ; � ! � + ✏↵,

x

+ ! x

+ + ↵ ; � ! � + ✏↵,

(2.6)

where ↵, ↵ are the gauge parameters of the two null U(1)’s.

To implement the gauging, we modify (2.5) as follows:

L = k

⇥
@�@�+ e

2�(@� + ✏A)(@� + ✏A)
⇤
+ (@x+ +A)(@x� +A). (2.7)

Eliminating the gauge fields gives rise to the background

L = k@�@�+
k

k✏

2 + e

�2�
@(� � ✏x

�)@(� � ✏x

+), (2.8)

with a dilaton that goes like � ⇠ ln(1+k✏

2
e

2�). The metric depends on the gauge invariant

coordinates �, �0 � ✏t and �

1 � ✏y. We can fix the gauge x

± = 0, which is natural in the

infrared region � ! �1, or � = � = 0, which is natural near the boundary � ! +1.

This gives rise to the well known geometry of strings and fivebranes (see e.g. appendix A

of [12]).

The parameter ✏ in (2.8) controls the transition from the near-horizon region of both

the strings and the fivebranes (e�� � ✏), and the region where we are in the near horizon

of the fivebranes but not of the strings (e�� ⌧ ✏). We can set it to any particular

value by shifting �. The role of this parameter in the bulk theory is very similar to

that of the coe�cient of the irrelevant operator in the Lagrangian of the corresponding

boundary theory. The latter determines the scale at which the theory transitions from

being dominated by the IR CFT, and the UV (Hagedorn) regime.

As mentioned above, the coset perspective is useful for studying correlation functions

of o↵-shell operators in the theory. We will postpone a detailed discussion of these corre-

lation functions to another publication, limiting our discussion here to a few comments.
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The	Lagrangian of	the	gauged	model	is	
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(2) The	resulting	background	𝑀$×𝑆$×𝑇: has	a	very	simple	physical
interpretation.	It	is	the	geometry	created	by	k	NS5-branes	and	p	
fundamental	strings	in	the	near-horizon	geometry	of	the	fivebranes.
It	interpolates	between	the	near-horizon	geometry	of	both	the	
fivebranes and	the	strings	in	the	IR	region	𝜙 → −∞,	and	that	of	just
the	fivebranes in	the	UV	region	𝜙 → ∞.	

Thus,	the	irrelevant	deformation	𝛿𝐿 = 𝜆𝐷 𝑥 takes	us	out	of	the	
near-horizon	of	the	strings.	The	parameter	𝜖 sets	the	scale	at	which	
this	happens.	



(3)	Spectrum:	one	can	use	the	coset description	to	study	the	
spectrum	of	perturbative	strings	in	the	background	

𝑀$×𝑆$×𝑇:

One	finds	a	continuum	of	states	labeled	by	the	momentum	and	
winding	around	the	y	circle,	(𝑛, 𝑤).	The	mass	shell	formula	is:

where	𝑗 = − Q
*
+ 𝑖𝑠,	with	𝑠 ∈ 𝑅 the	radial	momentum	of	the	

state,	and	the	Δ’s	are	(left	and	right)	internal	excitation	levels.	

and a similar equation for the other worldsheet chirality,

↵

0

4
!

2 =
↵

0

4
p

2
R � j(j + 1)

k

+�O � 1

2
. (3.5)

Adding (3.4) and (3.5) gives

!

2 =
⇣
n

R

⌘2
+

✓
wR

↵

0

◆2

+
2

↵

0

✓
�2j(j + 1)

k

+�O +�O � 1

◆
. (3.6)

The di↵erence of the two gives

�O ��O = nw. (3.7)

For w = 1, the mass-shell conditions (3.6),(3.7) describe a string winding once around the

spatial circle on the boundary in a particular excitation state labeled by O and with a

particular radial momentum labeled by j. To rewrite it in a more suggestive form, it is

useful to measure the energy of this state relative to the energy of a BPS string wrapping

the circle, i.e. write

! = E +
R

↵

0 . (3.8)

It is also useful to recall that in the AdS3 limit of the background (2.8), the last term in

(3.6) is related to the value of L0, h, for a long string with the same quantum numbers

[27,6],

h� k

4
=� j(j + 1)

k

+�O � 1

2
,

h� k

4
=� j(j + 1)

k

+�O � 1

2
.

(3.9)

Plugging (3.8), (3.9) into (3.6), (3.7), we find (for w = 1) the mass-shell condition

✓
E +

R

↵

0

◆2

�
✓
R

↵

0

◆2

=
2

↵

0

✓
h+ h� k

2

◆
+
⇣
n

R

⌘2
, (3.10)

and h � h = n. The mass-shell condition (3.10) agrees precisely with what one would

find for a state with the dimensions (3.9) in a CFT M of central charge cM = 6k, upon

a TT deformation of the sort studied in [1,2]. Thus, we conclude that the perturbative

string spectrum around the M = J = 0 BTZ black hole background, perturbed by the

deformation (2.2), agrees with the description of the spacetime CFT as the symmetric

orbifold Mp
/Sp, with the deformation (2.2) acting on the CFT M as in [1,2].

The generalization of (3.8),(3.9) and (3.10) to w > 1 is straightforward; (3.8) turns to

! = Ew +
wR

↵

0 , (3.11)
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Consider	for	example	the	winding	one	case	(w=1),	and	write	

𝜔 = <
no
+ 𝐸 (measure	the	energy	above	the	BPS	one)

In	the	undeformed limit	𝑡 → 0	one	has	

a relation	between	the	worldsheet quantum	numbers	and	the	
dimension	of	the	corresponding	state	for	long	strings	in	the	
spacetime CFT	(MO,	2000).		
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Putting	all	this	together,	one	finds	the	mass-shell	condition	

which	is	precisely	the	spectrum	for	a	𝑇𝑇+ deformed	CFT	with	
central	charge	𝑐 = 6𝑘.	This	theory	is	nothing	but	the	theory	on	a	
long	string,	so	we	conclude	that	the	supergravity	deformation	
𝛿𝐿 = 𝜆𝐷 𝑥 acts	on	that	theory	as	a	𝑇𝑇+ deformation.	

For	𝑤 > 1 one	finds	the	spectrum	of	the	𝑍s twisted	sector	of	the
theory	𝑀s/𝑆s on	𝑤 strings.	

and a similar equation for the other worldsheet chirality,
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⌘2
, (3.10)
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! = Ew +
wR

↵

0 , (3.11)
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(4)	Black	holes:	as	one	increases	the	energy,	the	above	long	
strings	move	towards	the	boundary,	where	their	coupling	
increases	(SW	1999)	and	eventually	they	become	black	holes	
(GKRS	2005).	

Therefore,	we	would	expect	that	the	entropy	of	black	holes	in	the	
background	𝑀$×𝑆$×𝑇: should	agree	with	that	of	the	symmetric	
product	CFT	𝑀t/𝑆t describing	the	strings.	This	is	indeed	the	case:



In	the	boundary	theory,	the	entropy	is	dominated	by	states	in	
which	we	distribute	the	available	energy	equally	between	the	𝑝
factors	of	𝑀,	and	one	has

It is easy to see that a partition of the energy with all Ej = E/p is a stationary point

of (6.2). That point is a local maximum of the entropy if and only if the entropy of Mt,

SM(E), satisfies the constraint
@

2

SM
@E

2

< 0 , (6.3)

i.e. the system has positive specific heat. In our case, assuming that all the Ej are large,

the microscopic entropy is given, in terms of dimensionless energy E , by (2.10),

SM(E) = 2⇡

r
cM
6

(2E + bE2) . (6.4)

Recall that cM = 6k, the central charge of the undeformed CFT

2

, M, and (6.4) is valid

for E � 1.

The first derivative of (6.4) gives the (dimensionless) inverse temperature,

�(E) = S

0
M(E) = 2⇡

r
cM
6

(1 + bE)(2E + bE2)�
1
2
. (6.5)

The second derivative (6.3) is

�

0(E) = �2⇡

r
cM
6

1

(2E + bE2)
3
2

(6.6)

We see that Mt is a system with positive specific heat – increasing the energy increases

the temperature.6 Hence, the maximal entropy configuration in (4.9) is one in which all

Ej are equal, and one has

S(E) = pSM(E/p) = 2⇡
p

2kpE + kbE2

, (6.7)

where we used the fact that cM = 6k. This result is valid for E � p, and interpolates

between the undeformed CFT behavior, which is obtained for p ⌧ E ⌧ p/b, and the UV

Hagedorn behavior for E � p/b.

We will next compare the result (6.7) to the thermodynamic entropy of black holes

in the bulk geometry (3.5), (3.6). The black holes in question are described by the metric

and dilaton [32]

ds

2 = �fE
f

1

(dx0)2 +
1

f

1

(dx1)2 +
f

5

fE
dr

2

,

e

�2(���0) =
f

1

f

5

,

(6.8)

6 It is interesting that without the strings, the specific heat of LST is negative, due to quantum

string corrections to the leading, Hagedorn, thermodynamics [15]. That e↵ect is present here as

well, but it is subleading in the 1/p expansion, for energies that scale like p.
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1

= 1 +
r
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1

r

2

, fE = 1� r

2

0

r

2

, f

5

=
kl

2

s

r

2

, r

2

1

= 8pk3/2lsG3

. (6.9)

G

3

is the three dimensional Newton constant, and r

0

is related to E via

r

2

0

=
16⇡2

G

3

k

3/2
l

3

sE
R

2

. (6.10)

There is also a B field that we did not write and x

1 ⇠ x

1 +R.

In the background (6.8) there is a competition between fE and f

1

. When r

0

⌧ r

1

,

the horizon of the black hole is deep inside the AdS
3

region, and the solution (6.8) is given

by the BTZ black hole one to a good approximation. Hence, the entropy is given by the

Cardy entropy with c = 6kp. When r

0

� r

1

, the horizon is deep inside the linear dilaton

region, the solution is given to a good approximation by the SL(2, IR)/U(1) black hole

times S1, and the entropy exhibits Hagedorn growth.

This behavior is similar to that found in the field theory analysis (6.7) (see the dis-

cussion around (2.10)). There the transition between the CFT

2

and LST behavior of the

entropy occurred at E ⇠ p/b ⇠ pR

2

/t. In the gravity calculation it occurs at r

0

⇠ r

1

,

which means (6.9), (6.10), E ⇠ pR

2

/l

2

s . Thus, the two calculations agree if we set the

coupling t to t ⇠ l

2

s .

To make this more precise, we compute the entropy of the black hole (6.8) using the

Bekenstein-Hawking formula. We get

SBH =
R

p
f

1

4G
3

f

5

= 2⇡

r
4k⇡2

l

2

sE2

R

2

+ 2pkE . (6.11)

Note that G

3

does not appear in the final form of the entropy, but ls does. This is in

agreement with the fact that LST involves physics at the string scale, and the Planck scale

does not play a role in it.

Equations (6.7) and (6.11) agree for

t = ⇡l

2

s . (6.12)

Thus, we see that in the bulk theory the dimensionless coupling b (2.6) takes the form

b = 4⇡2

l

2

s/R
2. The condition b ⌧ 1 implies that the radius of the x

1 circle is much larger

than ls. Note also that plugging in the value of t (6.12) and c = 6k into (2.12) leads to the

correct Hagedorn temperature (3.3).
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Future	work
There	is	clearly	a	lot	to	do.	E.g.	:

Ø In	the	𝑇𝑇+ deformed	CFT:	
§ Understand	the	symmetries	of	the	deformed	theory.	
§ Calculate	correlation	functions	on	the	plane.
§ Understand	the	UV	limit	of	the	theory.

Ø In	deformed	𝐴𝑑𝑆$ :
§ Understand	the	operator	𝐷(𝑥, �̅�) in	the	boundary	CFT.	
§ Calculate	correlation	functions	on	the	plane	and	compare	to	

the	boundary	analysis.	
§ Understand	the	symmetries	of	the	deformed	theory.	
§ Understand	the	double	trace		𝑇𝑇+ deformation.


