THE APPARENT HORIZON IN ADS/CFT

Netta Engelhardt

Princeton University

Strings 2017

Based N.E., A. Wall 1706.02038

• Black holes have entropy. Bekenstein; Hawking; Bardeen et al;...

- Black holes have entropy. Bekenstein; Hawking; Bardeen et al;...
- Second Law of Thermodynamics: the entropy of collapsing black holes grows with time.

- Black holes have entropy. Bekenstein; Hawking; Bardeen et al;...
- Second Law of Thermodynamics: the entropy of collapsing black holes grows with time.

Entropy of growing black holes

Is the entropy of a growing black hole a measure of our ignorance of what's behind the event horizon? Is this proportional to the area of the event horizon?

- Black holes have entropy. Bekenstein; Hawking; Bardeen et al;...
- Second Law of Thermodynamics: the entropy of collapsing black holes grows with time.

Entropy of growing black holes

Is the entropy of a growing black hole a measure of our ignorance of what's behind the event horizon? Is this proportional to the area of the event horizon?

Really a question about quantum gravity... let's use holography

which was initially motivated by black hole thermodynamics anyways.

Entropy in AdS/CFT

Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi:

Holographic Entanglement Entropy

$$S[\rho] \equiv -\text{tr}(\rho \ln \rho) = \frac{\text{Area}[X]}{4G\hbar},$$

where ρ is the state of a full boundary, X is a codimension-2, surface homologous to the boundary which is an extremum of the area functional; minimal area one if there's more than one.

Entanglement Entropy in Black Hole Collapse

Pure state dual to a collapsing black hole:

$$S[\rho] = 0$$

and the minimal area extremal surface X is just the empty set.

Entanglement Entropy in Black Hole Collapse

Pure state dual to a collapsing black hole:

$$S[\rho] = 0$$

and the minimal area extremal surface X is just the empty set. Unitarity $\Rightarrow S[\rho] = 0$ for all time.

Entanglement Entropy in Black Hole Collapse

Pure state dual to a collapsing black hole:

$$S[\rho] = 0$$

and the minimal area extremal surface X is just the empty set. Unitarity $\Rightarrow S[\rho] = 0$ for all time.

But entropy of black hole is growing.

• More generally, $S[\rho]$ can never give a Second Law; too fine-grained. Need to coarse grain.

- More generally, $S[\rho]$ can never give a Second Law; too fine-grained. Need to coarse grain.
- This can be done by restricting ρ to subregions, but that doesn't capture what we want.

- More generally, $S[\rho]$ can never give a Second Law; too fine-grained. Need to coarse grain.
- This can be done by restricting ρ to subregions, but that doesn't capture what we want.
- Intuitively, we want to coarse grain over the region inside the black hole.

- More generally, $S[\rho]$ can never give a Second Law; too fine-grained. Need to coarse grain.
- This can be done by restricting ρ to subregions, but that doesn't capture what we want.
- Intuitively, we want to coarse grain over the region inside the black hole.

$$S^{(\text{outer})} = \max_{\rho'} \left[-\text{tr}\rho' \ln \rho' : \text{black hole exterior fixed} \right]$$

How to qualify the interior region?

Event horizon is natural notion (with an area law!), but thermodynamics defined this way have an uncomfortable acausality. Let's use the **apparent horizon**.

Qualifying the Black Hole Interior

On a time slice, it is the outermost surface with light rays that do not bend into its exterior. $_{\rm Hawking}$

Qualifying the Black Hole Interior

On a time slice, it is the outermost surface with light rays that do not bend into its exterior. $_{\text{Hawking}}$

Apparent horizon in Black Hole Collapse

Apparent Horizon

A D-1-dim'l surface foliated by apparent horizons (under the right assumptions) does obey an area law. Hayward; Ashtekar, Krishnan

Apparent Horizon

A D-1-dim'l surface foliated by apparent horizons (under the right assumptions) does obey an area law. Hayward; Ashtekar, Krishnan

In a static black hole, the event horizon is precisely such a D-1-dim'l surface.

Coarse-Grained Entropy

What is the entropy associated to coarse graining over the region behind the apparent horizon μ ?

Coarse-Grained Entropy

What is the entropy associated to coarse graining over the region behind the apparent horizon μ ?

Coarse-Grained Entropy

What is the entropy associated to coarse graining over the region behind the apparent horizon μ ?

$$S^{(\text{outer})}[\mu] \equiv \max_{\rho'} \left[-\text{tr}\rho' \ln \rho' : O_W[\mu] \text{ fixed} \right]$$

Area of the Apparent Horizon in AdS/CFT

Area = Coarse-Grained Entanglement Entropy

$$S^{\text{outer}}[\mu] \equiv \max_{\rho'} \left(-\text{tr}[\rho' \ln \rho'] : O_W[\mu] \text{fixed} \right)$$
$$= \max_{\rho'} \left(\frac{\text{Area}[X_{HRT}]}{4G\hbar} : O_W[\mu] \text{fixed} \right)$$
$$= \frac{\text{Area}[\mu]}{4G\hbar}$$

where μ is an apparent horizon, ρ' are field theory states dual to a classical bulk with $O_W[\mu]$ fixed, but any (consistent) interior geometry.

$$S[\rho'] \stackrel{\text{HRT}}{=} \frac{\text{Area}[X]}{4G\hbar}$$

$$S[\rho'] \stackrel{\text{HRT}}{=} \frac{\text{Area}[X]}{4G\hbar}$$

$$Area[X] \stackrel{N}{=} Area[\mu]$$

$$S[\rho'] \stackrel{\text{HRT}}{=} \frac{\text{Area}[X]}{4G\hbar}$$

$$\operatorname{Area}[X] \stackrel{N}{=} \operatorname{Area}[\mu]$$

$$\Rightarrow S[\rho'] = \frac{\text{Area}[\mu]}{4G\hbar}$$

Explanation of Area Law

What is the boundary dual of $S^{(outer)}$?

What is the boundary dual of $S^{(outer)}$?

$$S^{(\text{dual})} = \max_{\rho'} (S[\rho'])$$
: field theory data dual to $O_W[\mu]$)

What is the boundary dual of $S^{(\text{outer})}$?

$$S^{(\text{dual})} = \max_{\rho'} (S[\rho'] : \text{field theory data dual to } O_W[\mu])$$

When black hole is near equilibrium: (apparent horizon is perturbatively close to the event horizon)

Assume: If O and J are "simple" (correspond to locally propagating bulk perturbations), then (in the strictly classical Einstein gravity limit):

$$S^{(\text{dual})}(t_i) = \max_{\rho'}(S[\rho'] : \text{fixing } \langle O \rangle_J \text{ after } t_i)$$

• Area of apparent horizon is entropy associated to ignorance of region behind it.

- Area of apparent horizon is entropy associated to ignorance of region behind it.
- Can construct explicitly the "coarse-grained" spacetime dual to state maximizing $S[\rho]$ subject to fixed exterior of apparent horizon.

- Area of apparent horizon is entropy associated to ignorance of region behind it.
- Can construct explicitly the "coarse-grained" spacetime dual to state maximizing $S[\rho]$ subject to fixed exterior of apparent horizon.
- First holographic explanation of area law in the bulk.

- Area of apparent horizon is entropy associated to ignorance of region behind it.
- Can construct explicitly the "coarse-grained" spacetime dual to state maximizing $S[\rho]$ subject to fixed exterior of apparent horizon.
- First holographic explanation of area law in the bulk.
- Possible boundary dual via fixing one point functions (with sources), but unclear how general that is.

Future Directions and Applications

- Boundary-anchored surfaces? Subtleties with divergence structure Marolf, White to appear
- Interpretation of non-minimal area extremal surfaces (not entwinement Balasubramanian, Chowdhury, Czech, de Boer; Lin;
 Balasubramanian, Bernamonti, Craps, De Jonckheere, Galli...)
- Interpretation of area law for arbitrary signature "apparent horizons" NE, Bousso

• 1/N corrections

