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We present a review of theories of states of quantum matter without quasiparticle excita-
tions. Solvable examples of such states are provided through a holographic duality with
gravitational theories in an emergent spatial dimension. We review the duality between
gravitational backgrounds and the various states of quantum matter which live on the
boundary. We then describe quantum matter at a fixed commensurate density (often
described by conformal field theories), and also compressible quantum matter with vari-
able density, providing an extensive discussion of transport in both cases. We present a
unified discussion of the holographic theory of transport with memory matrix and hy-
drodynamic methods, allowing a direct connection to experimentally realized quantum
matter. We also explore other important challenges in non-quasiparticle physics, includ-
ing symmetry broken phases such as superconductors and non-equilibrium dynamics.
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Recent Foci of AdS/CMT

• Transport 

• Linear response 

• Non-Linear, Steady State Flows 

• Phase diagrams 

• Black Hole Instabilities 

• Back-reacted geometries 

• Quenches



• Strange Metals realise strongly interacting states of 
matter without “quasi-particles” 

• Long-lived modes are long wavelength perturbations of 
(almost) conserved charges and (pseudo) Goldstone 
modes 

• Holography provides a theoretical framework to gain 
new insights



Underlying microscopic theory with familiar CMT limits 
(e.g. hydro, memory matrix formalism) 

➡ Realise novel ground states of strongly coupled matter

Hydro Memory 
Matrix

AdS/CFT



Transport

• Experiments on transport of conserved charges probe 
collective degrees of freedom 

• Introduce external electric field and temperature 
gradient 

• Measure response currents as a function of frequency, 
temperature, external parameters



Transport

Sources Response Currents

~E = ~E0 e
�i!t ~J = ~J0(!) e

�i!t

•The transport coefficients are directly related to retarded 
Green’s functions 

•The “open circuit” thermal conductivity is 

•“DC” refers to the limit ! ! 0

~JQ = ~JQ0(!) e
�i!t
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• Quasi-Particles that carry heat / charge and are coupled 
to a lattice 

• The heat current follows the electric current  
(Wiedemann-Franz law) 

• Quadratic resistivity 

• Lower bound on           (Mott-Ioffe-Regel)�DC

Strange / Bad metals violate all or some of these

L ⌘  (� T )�1 =
⇡2

3

k2B
q2

�DC / T�2

Quasi-Particle Hallmarks (Fermi Liquid)



Neutral Quantum Critical Points

• Strange Metals appear in the vicinity of QCPs 

• Finite electric DC conductivity        from Quantum Critical, 
“incoherent” current at zero charge 

• Recent experiments with Graphene at zero chemical 
potential

Damle, Sachdev
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Crossno, Shi, Wang, Liu, Harzheim, Lucas, Sachdev, Kim, Taniguchi, Watanabe, Ohki, Fong
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• Delta function due to momentum conservation 

• The delta function drops out of certain combinations which probe the 
“incoherent” current 

• The open circuit thermal conductivity 

• The diffusive current 

• The “heat free” electric conductivity

CFT Metals at Finite Density

Hartnoll, Kovtun, Muller, Sachdev
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Momentum Relaxation Mechanism

• Add time-independent sources which break translations to 
form a momentum relaxing “lattice” 

• Compute retarded Green’s functions for the currents 

Universal “lattice” sources: 

• Strain (stress tensor) 

• Chemical potential (charge density)

S ! S +

Z
�(x)O(x)� 1

2

Z
�gµ⌫(x)T

µ⌫(x) +

Z
At(x) J

t(x)

AD, Gauntlett, Griffin, Melgar Scopelliti, Schalm, Lucas

Hartnoll, Hofman Horowitz, Santos, Tong Lucas

Herzog, Balasubramanian AD, Gauntlett, Pantelidou

Chesler, Lucas, Sachdev



Momentum Relaxation

• Breaking translations moves the momentum 
conservation pole down the imaginary axis 
and resolves the delta function

⌧�1

Re!

Im! GJQJQ(!,k = 0)

• The momentum relaxation rate          is function of the lattice 
couplings, temperature and chemical potential 

• DC transport is dominated by     when large compared to 
microscopic timescales 

• Relation between      and the zero frequency spectral weight 
of “Lattice” operator

⌧�1

Hartnoll, Hofman
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Corners of Universality?

• Break translations weakly and examine incoherent current  
(e.g.            at finite density) 

‣ In the DC limit the momentum relaxation time drops out 

‣ Remnant “Wiedemann-Franz” law 

‣ Hall angle dominated by 

• Break translations strongly and examine DC currents 

‣ All timescales become microscopic 

‣ Transport becomes incoherent 

‣ Existence of “Planckian” bounds on diffusion?

Mahajan, Barkeshill, Hartnoll

Hartnoll

L̄ ⌘ ̄ (� T )�1 =
s2

⇢2

Lucas, SachdevHartnoll, Kovtun, Muller, Sachdev
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Holographic Lattices

r
@AdS

Killing 
Horizon

• Holography realises the thermal state as a black brane solution 

• Impose periodic boundary conditions which break translations

At(t,x, r) ! µ(x) + · · ·
gij(t,x, r) ! r2 gij(x) + · · ·
'(t,x, r) ! r�'�d'(x) + · · ·



Holographic Lattices

@AdS
Killing 

Horizon

• Perturb by boundary electric field and temperature gradient 

• Construct perturbation in the bulk and read off electric and 
heat current from the fall-offs

r

~E(t) = e�i!t ~E

~rT (t) = �e�i!t T ~⇣



Weak Momentum Relaxation

• Hard numerical problem 

• First examples governed by weak momentum relaxation 
at low temperatures

Horowitz, Santos, Tong

!

Re�(!)

Chesler, Lucas, Sachdev

AD, Gauntlett



Strong Momentum Relaxation

• Strong lattices can drastically change the RG flow 

• Novel horizons which don’t restore translations lead to 
incoherent transport

UV

•   
• Lifshitz 
• Hyperscale Violating

AdS2 ⇥ Rd

Incoherent

AD, Hartnoll AD, Gauntlett

Kachru, Liu, Mulligan
Charmousis, Gouteraux, Kim, Kiritsis, Meyer

Huijse, Sachdev, Swingle
Taylor

AD, Hartnoll

AD, Gauntlett
Gouteraux

AD, Gouteraux, Kiritsis

Andrade, Withers

Horizon restores 
translations



DC Transport
• Introduce constant electric field       and temp gradient 

• Time independent, divergence free, periodic current 
densities               and                will form in e.g. 2+1 
dimensions 

• The relevant quantity to transport is the total fluxes of 
currents       and 

• Fluxes fix the transport coefficients

J̄ i
QJ̄ i

Ej ⇣j

J

i
Q(x, y)J

i(x, y)

J̄

x =

Z
dy J

x(x, y)e.g.
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Q = T ↵̄ij

DC Ej + T ̄ij
DC ⇣j

J̄ i = �ij
DC Ej + T↵ij

DC ⇣j
AD, Gauntlett

Lucas



Holographic DC Transport

• For simplicity assume static background 

• In the bulk this translates to looking for perturbative stationary 
solutions that preserve  

• There are current densities        and         on the horizon with fluxes 
equal to the field theory ones 

• Similar to Komar / Smarr formulae 

• Extends earlier hints

ds2 = gtt(r,x) dt
2 + ds2M (r,x)

A = at(r,x) dt

' = '(r,x)

�gµ⌫(r,x)dx
µ
dx

⌫

�aµ(r,x) dx
µ

�'(r,x)

@t

J i
h J i

Qh

Kovtun, Son, Starinets Iqbal, Liu

AD, Gauntlett

J̄ i = J̄ i
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Q = J̄ i
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Holographic DC Transport

• Impose in-falling conditions close to the horizon 

• Constitutive relations expressing horizon currents in terms of 
near horizon expansion coefficients 

• Einstein-Maxwell as illustrative example

"

�gti(",x) = �vi(x) +O(")

�at(",x) = w(x) +O(")

�gtr(",x) = (4⇡T )�1 p(x) +O(")

J i
h =

s
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�
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�
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Qh = Ts vi, s = 4⇡

p
g(0), ⇢ =

p
g(0) a

(0)
t

AD, Gauntlett



Holographic DC Transport

• Expanding constraints gives a closed system of equations 

• Horizon current densities are fixed by a Stokes flow for an auxiliary, 
steadily driven fluid on the curved horizon 

• Not a derivative expansion! 

• Exact utilisation of the old membrane paradigm in holography

"

Ht ) riv
i = 0

G ) r2w + vi ria
(0)
t = �riE

i

Hj ) 2rir(i vj) + a(0)t rjw �rj p = �4⇡T ⇣j � a(0)t Ej

H =

Z
Nµ Hµ +D G + SurfaceTerms

AD, Gauntlett

Damour Thorne, Price



Holographic DC Transport
• More general matter fields 

‣ Additional “friction” terms                     in Stokes equations 

• Broken time reversal symmetry - magnetic fields and background 
magnetisation currents 

‣ Additional “Lorentz” and “Coriolis” force terms 

‣ The relation between the boundary and the horizon fluxes is 
modified by magnetisation terms 

‣ The horizon currents are the correct transport currents! 

• Higher derivative gravity (e.g. Gauss-Bonnet)

Banks, AD, Gauntlett

AD, Gauntlett, Griffin, Melgar

AD, Gauntlett, Griffin, Lohitsiri, Melgar

@i'@j' vi

AD, Gauntlett, Griffin, Melgar

Cooper, Halperin, Ruzin

J̄ i = J̄ i
h �M ij

E ⇣j , J̄ i
Q = J̄ i

Qh �M ij
E Ej � 2M ij
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Holographic DC Transport AD, Gauntlett

riv
i = 0

r2w + vi ria
(0)
t = �riE

i

2rir(i vj) + a(0)t rjw �rj p = �4⇡T ⇣j � a(0)t Ej

� ⇡ L�1 4⇡⇢2/s↵ ⇡ L�1 4⇡⇢̄ ⇡ L�1 4⇡sT

• Remnant “Wiedemman-Franz” law for perturbative breaking of 
translations

L̄ = ̄/(T �) ⇡ s2

⇢2



Holographic Bounds on Conductivity
• Bounds of conductivities extracted from hydro flows 

• Applicable to holographic DC conductivities due to 
similarity to steady fluid flows 

• Einstein-Maxwell in D=4 

• Einstein-Maxwell-Scalar in D=4 with potential          
and global minimum

Lucas

V (')

Grozdanov, Lucas, Sachdev, Schalm

Vmin Grozdanov, Lucas, Schalm

�DC � e�2

T�1 DC � 8⇡2 (6� Vmin)
�1



Holographic DC Transport

To think about: 

• Hydrodynamic/Diffusive modes 

• Treatment of Supercurrents / Goldstone modes 

• Finite but Small Frequency 

• What else does the horizon fix?

AD, Gauntlett, Ziogas



Holography ➜ Hydrodynamics
• Within fluid / gravity the exact current fluxes from the horizon 

Stokes flow come from summing an infinite hydro expansion 

• Possible to examine the hydrodynamic limit of lattice by: 

• By directly examining the conductivities 

• By systematically performing the hydrodynamic expansion 

• Clarified the relation between the coefficient        and 
holographic formulae for DC conductivity 

• Comparison with intuition from treatment of weak momentum 
relaxation in relativistic hydrodynamics

Davison, Gouteraux

Blake

�Q

Hartnoll, Kovtun, Muller, Sachdev



Q-lattices

• Simple models which retain homogeneous metric and 
relax momentum 

• Require global U(1)’s or shift symmetries in the bulk 

• Translations are restored when either 

• Higher derivative Q-lattices - Linear Axions

L = R� 1

2
(@')2 � 1

2
� (')

h
(@�1)

2 + (@�2)
2
i
+ V (')� Z (')

4
F 2

ds

2
4 = �U(r) dt2 + U(r)�1

dr

2 + e

2V1(r)
�
dx

2 + dy

2
�

A = a(r) dt, ' = '(r)

�1 = k x, �2 = k y

AD, Gauntlett Andrade, Withers

k ! 0�(') ! 0 (Lattice hydrodynamic limit)

Baggioli, Pujolas Gouteraux, Kiritsis, Li



DC Transport for Q-lattices

• The Stokes flow equations simplify to algebraic equations 

• Possible to manipulate the bulk ODEs and express DC 
conductivities in terms of horizon data (Historically happened 
first!)

�DC = Z('h) +
4⇡⇢2

k2�('h)s

↵DC =
4⇡⇢

k2�('h)
̄DC =

4⇡sT

k2�('h)

Blake, Tong

AD, Gauntlett

Andrade, Withers Gouteraux



DC Transport for Q-lattices
• In Cuprates        and          scale differently 

• Similar in spirit expressions in the presence of magnetic 
fields 

• For perturbative background magnetic fields

✓H / B

⇢
�diss

• Can have                        at low temperatures 

• The Hall angle and the conductivity can scale differently 
with temperature

AD, Blake AD, Blake, Lohitsiri

�ccs � �diss

�DC = Z('h) +
4⇡⇢2

k2�('h)s

⌘ �ccs + �diss

AD, Blake

✓H �DC



• Simple examples of ground states with broken translations 

• Electric charge is carried by irrelevant modes 

• Metric similar to translationally invariant hyperscale violating 

• Can be found “top down”

� (') ⇠ e�i', Z ⇠ e�', V ⇠ e↵'

ds

2 ⇡ ⇢

�(2�✓)
⇣
�⇢

�2(z�1)
dt̄

2 + d⇢

2 + dx̄

2 + dȳ

2
⌘

' ⇡ s ln ⇢, �1 = k̄ x̄, �2 = k̄ ȳ

AD, Gauntlett, Rodriguez Sosa AD, Gauntlett, Rodriguez Sosa, Rosen

Azeyanagi, Li, Takayanagi Mateos, Trancanelli

AD, Gauntlett Gouteraux

Q-Lattice Incoherent Ground States



Can study cold black hole horizons and find behaviour of 
transport coefficients: 

• Heat and electric currents scale independently 

• Violation of “Motte-Ioffe-Regel” bounds. Can become 
power law insulators at low temps. 

• The Hall angle and electric conductivity scale differently 

• Initial effort to match the temperature scaling of the 
Cuprates

AD, Gauntlett

Gouteraux

Q-Lattice Incoherent Ground States

AD, Blake

Amoretti, Baggioli, Magnoli, Musso

� / T�1, ✓H / T�2

AD, Gauntlett



Transition to Incoherent Transport

• Consider linear axion model at zero charge with 
dimensionless parameter 

• Examine the transition through the pole structure of 

• Transition when

(!)

/ k2/T

k ⌧ T k � T

Re!

Im!Im!

Re!

k/T

k ⇡ T

Davison, Gouteraux



Incoherent Hydrodynamics

• With broken translations, long wavelength excitations of 
charge and energy become coupled and diffusive 

• Diffusion with quasiparticles is fixed by a Fermi velocity 
and timescale related to the mean free path 

• For incoherent metals the Mott-Ioffe-Regge bound should 
be replaced by 

• Similar to

Hartnoll

E, ⇢ / e�i!±(k)t+ikx

!±(k) = �iD± k2

D± & v2 ⌧eff ⇠ v2 T�1

Kovtun, Son, Starinets

Hartnoll

DFL ⇠ v2F ⌧FL

⌘/s & C



Incoherent Hydrodynamics
• A “standard” hydrodynamics arguments yields the 

modes

!±(k) = �iD± k2
D+ D� =

�

�



c⇢

D+ +D� =
�

�
+



c⇢
+

T

c⇢�2�
(⇣ � � �↵)2

�µ(t,x) = �µ0 e
�i!t+ikx �T (t,x) = �T0 e

�i!t+ikx

• The diffusion constants are fixed in terms of 
conductivities and thermodynamic susceptibilities 

• Easy to extract in holographic theories

Hartnoll



Diffusion and Chaos

• Which scales set                      for incoherent transport?  

• Appealing proposal to identify    with the butterfly 
velocity       and a Planckian timescale 

• Intuition comes from Q-lattice - Linear axion models

v
vB ⌧ ⇠ 1/T

Blake

D± ⇠ v2 ⌧

ds2 = �U(r) dt2 +
dr2

U(r)
+ V (r) dx2

d

• The butterfly velocity is given terms of horizon data

vB =
4⇡T

dV 0(rh) Blake
Roberts, Swingle

Shenker, Stanford
Roberts, Stanford, Susskind

Blake



Diffusion and Chaos

• The Q-Lattices can flow to families of ground states 
which are incoherent or restore translations 

• The diffusion constants simplify at low temperatures 

• By inspection, for all these cases:

With                  a temperature independent number
Blake Blake, Davison, Sachdev

E > 1/2

AD, Blake Davison, Fu, Georges, Gu, Jensen, Sachdev

DT ⌘ D� = /c⇢ = E
v2B
2⇡T

Blake



Diffusion and Chaos
• Similar results from non-Einstein Gravity dual models (?) 

‣ Sachdev-Ye-Kitaev chain models 

‣ Systems of Electrons/Phonons 

‣ Bose-Hubbard Models 

‣ O(N) Models 

‣ Critical Fermi Surface 

‣ Diffusive Metals 

• Food for thought 

‣ Sachdev-Ye-Kitaev chain with varying inter-site couplings

Gu, Stanford, Qi Davison, Fu, Georges, Gu, Jensen, Sachdev

Werman, Kivelson, Berg

Bohrdt, Endrel, Mendes, Knap

Chowdhury, Swingle

Patel, Sachdev

Patel, Chowdhury, Sachdev, Swingle

DT ⇠ v2B ��1
L

Gu, Lucas, Qi



Conclusions / Outlook

• Discussed Transport and Momentum Relaxation in 
Holography 

• DC conductivities from black hole horizons 

• Holographic Ground States of Incoherent Transport 

• Hints of Universality for Incoherent Transport 

• Vast variety of Ground States with broken translations
Nakamura, Ooguri, Park Ooguri, Park AD, Gauntlett Bergman, Jokela, Lifschytz, Lippert

AD, Gauntlett, Pantelidou Withers Iizuka, Kachru, Kundu, Narayan, Sircar, Trivedi

Rozali, Smyth, Sorkin, Stang Cremonini, Li Li, Jie Ren Cai, Li Li, Wang, Zaanen Andrade, Krikun


