Supersymmetry Enhancement

Federico Carta

DESY

9th of July 2019

Based on...

(1) Supersymmetry enhancement from T-branes

- F.C., S. Giacomelli, R.Savelli. 2018
(2) Supersymmetry enhancement from Hitchin Systems
- (Work in progress)
F.C., A.Collinucci, S. Giacomelli, H. Hayashi, R.Savelli

For earlier related works in Susy Enhancement see

- K. Maruyoshi, J. Song, 2016
- P. Agarwal, K. Maruyoshi, J. Song, 2016
- P. Agarwal, A, Sciarappa, J. Song, 2017
- S. Giacomelli, 2018

Supersymmetry enhancement.

- A UV QFT follows an RG flow to a IR QFT with more explicit supersymmetry.
- Intrinsically interesting phenomenon in QFT.
- Can use the lagrangian to compute RG-protected quantities.

Maruyoshi-Song flows

- Start in UV with a $4 d \mathcal{N}=2$ SCFT \mathcal{T} with flavor symmetry F.
- Add by hand a $\mathcal{N}=1$ chiral M.
- M is gauge singlet and in the adjoint of the F.
- Turn on a superpotential term $W_{d e f}=\operatorname{Tr} M q \tilde{q}$.
- Give a nilpotent vev to M. This triggers a RG flow.
- Depending on the choice of \mathcal{T} and $\langle M\rangle$ sometimes we find that $\mathcal{T}[\langle M\rangle]$ flows in the IR a new $\mathcal{N}=2$ SCFT: call it $\mathcal{T}[\langle M\rangle]_{I R}$.
- "New" means $\mathcal{T}[\langle M\rangle]_{I R} \neq \mathcal{T}$

Enhancing flows connecting rank 1 theories

A figure summarizing all the existent MS connecting rank one theories.
Multiple flows happen for different nilpotent orbit deformations.

The geometrical picture. Part 1

- Consider a F-theory setup, on $\mathbb{R}^{8} \times K 3$
- Put a D3 probing the elliptic fibration.
- Write the Weierstrass model for the elliptic fibration. The theory on the D3 will be the theory \mathcal{T} in the UV. In particular the Weiestrass model fixes the flavor group F.
- We interpret the CB operator u as the coordinate in one of the \mathbb{R}^{2} normal to \mathbb{R}^{4}.
- Elliptic fiber \simeq Seiberg-Witten curve of the QFT.

The geometrical picture. Part 2

- The chiral M is geometrized by a T-brane deformation of the 7-brane stack. \Longrightarrow Nilpotent orbit + fluctuation.
- Ex. For the case in which $F=\mathfrak{s l}_{2}$, we can take a T-brane profile given by:

$$
\varphi=\langle\varphi\rangle+\delta \varphi=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
x & 0
\end{array}\right)
$$

- $\delta \varphi$ will be the highest-spin singlet appearing in the decomposition of Adj.

The geometrical picture. Part 3

Singularity	Curve	Flavor group
$I I^{*}$	$u^{2}=v^{3}+v\left(M_{2} z^{3}+M_{8} z^{2}+M_{14} z+M_{20}\right)+\left(z^{5}+M_{12} z^{3}+M_{18} z^{2}+M_{24} z+M_{30}\right)$	E_{8}
$I I I^{*}$	$u^{2}=v^{3}+v\left(z^{3}+M_{8} z+M_{12}\right)+\left(M_{2} z^{4}+M_{6} z^{3}+M_{10} z^{2}+M_{14} z+M_{18}\right)$	E_{7}
$I V^{*}$	$u^{2}=v^{3}+v\left(M_{2} z^{2}+M_{5} z+M_{8}\right)+\left(z^{4}+M_{6} z^{2}+M_{9} z+M_{12}\right)$	E_{6}
I_{0}^{*}	$u^{2}=v^{3}+v\left(\tau z^{2}+M_{2} z+M_{4}\right)+\left(z^{3}+\tilde{M}_{4} z+M_{6}\right)$	$S O(8)$
$I V$	$u^{2}=v^{3}+v\left(M_{1 / 2} z+M_{2}\right)+\left(z^{2}+M_{3}\right)$	$S U(3)$
$I I I$	$u^{2}=v^{3}+v z+\left(M_{2 / 3} v+M_{2}\right)$	$S U(2)$
$I I$	$u^{2}=v^{3}+v M_{4 / 5}+z$	no

Table: Maximally deformed Weierstrass models

- The parameters M_{i} are the versal deformations of the model
- They correspond to casimir operators of the Higgs field in the F-theory picture, which we take to be $\varphi=\langle M\rangle+\delta \varphi$

The geometrical picture. Part 4

- When the D3 probes the deformed Weiestrass model, the theory is $\mathcal{N}=1$, due to the T-brane presence. Original $\mathrm{K} 3 \rightarrow \mathrm{CY} 3$.
- RG flow is a local zoom at the singularity.
- In the IR, some terms in the Weiestrass become subleading. We throw them away and recover the Weierstrass for $\mathcal{T}^{I R}$

Conclusions

(0) Can interpret geometrically the MS flows, for the rank 1 case.
(2) We engineer the UV theory as a D3 probing the singularity locus of the elliptic fibration
(3) We engeneer the nilpotent vev for M as a T-brane deformation of the 7-brane stack
(9) We interpret the RG flow as a local zoom-in.
(0) We recover the curve for the IR theory, in all cases which enhance.

