Supersymmetry Enhancement

Federico Carta

DESY

9th of July 2019

Federico Carta (DESY)

Supersymmetry Enhancement

Based on...

- Supersymmetry enhancement from T-branes
 - F.C., S. Giacomelli, R.Savelli. 2018
- Supersymmetry enhancement from Hitchin Systems
 - (Work in progress) F.C., A.Collinucci, S. Giacomelli, H. Hayashi, R. Savelli

For earlier related works in Susy Enhancement see

- K. Maruyoshi, J. Song, 2016
- P. Agarwal, K. Maruyoshi, J. Song, 2016
- P. Agarwal, A, Sciarappa, J. Song, 2017
- S. Giacomelli, 2018

Supersymmetry enhancement.

- A UV QFT follows an RG flow to a IR QFT with more explicit supersymmetry.
- Intrinsically interesting phenomenon in QFT.
- Can use the lagrangian to compute RG-protected quantities.

Maruyoshi-Song flows

- Start in UV with a $4d \mathcal{N} = 2$ SCFT \mathcal{T} with flavor symmetry F.
- Add by hand a $\mathcal{N} = 1$ chiral M.
- *M* is gauge singlet and in the adjoint of the *F*.
- Turn on a superpotential term $W_{def} = Tr \ Mq\tilde{q}$.
- Give a *nilpotent vev* to M. This triggers a RG flow.
- Depending on the choice of \mathcal{T} and $\langle M \rangle$ sometimes we find that $\mathcal{T}[\langle M \rangle]$ flows in the IR a *new* $\mathcal{N} = 2$ SCFT: call it $\mathcal{T}[\langle M \rangle]_{IR}$.
- "New" means $\mathcal{T}[\langle M \rangle]_{IR} \neq \mathcal{T}$

Enhancing flows connecting rank 1 theories

A figure summarizing all the existent MS connecting rank one theories. Multiple flows happen for different nilpotent orbit deformations.

Federico Carta (DESY)

Supersymmetry Enhancement

9th of July 2019 5/10

• • • • • • • • • • • •

- Consider a F-theory setup, on $\mathbb{R}^8 \times K3$
- Put a D3 probing the elliptic fibration.
- Write the Weierstrass model for the elliptic fibration. The theory on the D3 will be the theory T in the UV. In particular the Weiestrass model fixes the flavor group F.
- We interpret the CB operator u as the coordinate in one of the ℝ² normal to ℝ⁴.
- Elliptic fiber \simeq Seiberg-Witten curve of the QFT.

< ロ > < 同 > < 回 > < 回 >

- The chiral *M* is geometrized by a T-brane deformation of the 7-brane stack. ⇒ Nilpotent orbit + fluctuation.
- Ex. For the case in which F = sl₂, we can take a T-brane profile given by:

$$\varphi = \langle \varphi \rangle + \delta \varphi = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$$
(1)

 δφ will be the highest-spin singlet appearing in the decomposition of Adj.

Singularity	Curve	Flavor group
II^*	$u^{2} = v^{3} + v(M_{2}z^{3} + M_{8}z^{2} + M_{14}z + M_{20}) + (z^{5} + M_{12}z^{3} + M_{18}z^{2} + M_{24}z + M_{30})$	E_8
III^*	$u^{2} = v^{3} + v(z^{3} + M_{8}z + M_{12}) + (M_{2}z^{4} + M_{6}z^{3} + M_{10}z^{2} + M_{14}z + M_{18})$	E_7
IV^*	$u^{2} = v^{3} + v(M_{2}z^{2} + M_{5}z + M_{8}) + (z^{4} + M_{6}z^{2} + M_{9}z + M_{12})$	E_6
I_0^*	$u^2 = v^3 + v(\tau z^2 + M_2 z + M_4) + (z^3 + \tilde{M}_4 z + M_6)$	SO(8)
IV	$u^2 = v^3 + v(M_{1/2}z + M_2) + (z^2 + M_3)$	SU(3)
III	$u^2 = v^3 + vz + (M_{2/3}v + M_2)$	SU(2)
II	$u^2 = v^3 + vM_{4/5} + z$	no

Table: Maximally deformed Weierstrass models

- The parameters M_i are the versal deformations of the model
- They correspond to casimir operators of the Higgs field in the F-theory picture, which we take to be $\varphi = \langle M \rangle + \delta \varphi$

< ロ > < 同 > < 回 > < 回 >

- When the D3 probes the deformed Weiestrass model, the theory is N = 1, due to the T-brane presence. Original K3 → CY3.
- RG flow is a local zoom at the singularity.
- In the IR, some terms in the Weiestrass become subleading. We throw them away and recover the Weierstrass for \mathcal{T}^{IR}

< 口 > < 同 > < 回 > < 回 > < 回 > <

Conclusions

- Can interpret geometrically the MS flows, for the rank 1 case.
- We engineer the UV theory as a D3 probing the singularity locus of the elliptic fibration
- We engeneer the nilpotent vev for M as a T-brane deformation of the 7-brane stack
- We interpret the RG flow as a local zoom-in.
- We recover the curve for the IR theory, in all cases which enhance.