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Online Learning with Bandit Feedback

Repeated game between learner and an adversary

action 1y,
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Applications

- min max g(x
e Two player zero sum games: PeX ey 9(z,y)

o example: constrained optimization, robust ML

e Online advertising systems
o An advertiser submits a bid and only observes the reward if they won the auction

e Hyperparameter optimization in ML
o Tuning learning rate, regularization strength etc..

e Non-stochastic control



Background

e Gradient based methods
o estimate the gradient at point ras (d/é) f(z + du)u
m 1w is a random vector sampled from unit sphere

Stoke’s theorem
U
V/&B flz+v)dv = /(SSf(z'A—u)mdu‘

m this is an unbiased estimate of gradient of E,[f(z + dv)]

o perform stochastic gradient descent on the smoothed function

Methods Setting Regret
[Flaxman et. al’04]  bounded convex O(T>/%)
[Abernethy et. al’ 09] linear 0(T1/2)
[Saha-Tewari ’ 11] smooth convex 0(T2/ %)
[Hazan-Levy’ 14] strongly convex, O(T*?)

smooth




Background

e General convex losses: Regret optimal (in T) algorithms were developed by
Bubeck et al. (2017), Lattimore (2020)

e Lattimore (2020) only show the existence of a strategy, but do not provide any
constructive algorithm

e Bubeck et al. (2017) develop an extension of exponential weights algorithm
o but the runtime of the algorithm is large, and is not implementable in practice

This work: Develop regret optimal, computationally efficient algorithms for a broad class of
loss functions.




Key Observation

e Challenge: achieve the right exploration exploitation trade-off

e Most existing works only estimate gradients =~ soo0| — Sahaetal 201

Hazan & Levy (2014)

of the loss function e
o They ignore curvature information and perform —— y=3.2m

poor exploration 3000 -

Regret

2000 A

e An ideal algorithm performs:

o less exploration along high curvature directions
o more exploration along low curvature directions 07
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This work: estimate higher order information regret of Va”OUSq%;ag::t’i‘é It;assse%;i‘;mq“es on convex
(Hessian) of the loss function for better exploration




k-convex loss functions

Definition: fis called k-convex if
there exist constants C;» C, and a
PSD matrix H such that

Ve, et H < V? f(z) < coH

C2
where — < k,0=<H =<1
C1

- /

Examples
e Linear, Quadratic

e Generalized Linear Models: logistic regression
e Strongly convex and Smooth

K-convex

convex



Main Result

-

Suppose f,'s are k-convex and generated by an oblivious adversary

Then there exists an algorithm that achieves O(d5/2m min(dl/z, /{)Tl/z) regret in
expectation

\

-

Remarks
e The algorithm is an improper algorithm that plays iterates outside the constraint set
e For bandit logistic regression this gives a regret of O(eD VT)
o where D is the diameter of the parameter space
o O(-) hides all parameters other than D, T

-
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Online Logistic Regression

Paper Feedback | Advers. | Proper Regret Comp. Note
Hazan et al. (2007) full v v O(eP) O(d?)
Hazan et al. (2014) full x v | QP vVDT) =
Foster et al. (2018) full v X 0O(1) poly(d,T)
Hazan and Kale (2011) || semi-bandit v v O(eP A DT?/3) O(d?)
Foster etal. (2018) || semi-bandit | v/ X O(eP AVT) | poly(d,T)
Dong et al. (2019) bandit X v O(VT) poly(d) Bayesian
Faury et al. (2022) bandit % v O(eP v VT) O(d?) | frequentist
Corollary 8 bandit v X 0(e*P/T) O(d?)

Table 4: Comparison with relevant prior works for online logistic regression. 0, in the regret
column hide all parameters other than D, T" and logarithmic factors in D, T'.
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Bandit Newton Step (BNS)

e Randomly sample vt 1, v¢2 from surface of a unit sphere
~—1/2
o Compute y; =z + 4; | (041 +vs2)

3 th is the cumulative Hessian estimate

e Estimate gradients, Hessians from single point feedback

1

Gradient: g: = 2dft(yt)fif_1w,1

1 1
Hessian: Hy = 2d° fy(ys) A7 (vi,10], + ve20] )AL

e A; which dictates the exploration relies on curvature of cumulative loss

t
n
— K_;



Bandit Newton Step (BNS)

e Perform Newton step using the estimated gradients, Hessians
A, .
Tt41 = H [wt — N4, gt}
X

Ay
o where [] is the projection onto x w.r.t || - ”A}
X



Key steps for deriving regret bound

e A, is a good approximation of the true cumulative Hessian
0.54; < Ay < 1.54,

e Expected regret can be decomposed as

[z o) £ |5 Fuw

+E

Z(ft(yt)_ft(y)) (fe(z) — f(a:))

t

where ft is the following smoothing of f;

~

Ful@) =Euo [fi (o + A (w+v))]



Key steps for deriving regret bound

Y (Felye) = £ o(we) = (filz) — f 4(2))

t

+E

thyt)—ft Zf Yt)

e First term: BNS performs stochastic newton step on f~t
o Reduction to stochastic online Newton method

o Stochastic Online Newton Step has good regret bounds in expectation

e Second term: f;, f, are close to each other over the entire domain, because of

K-convexity

Question: This only gives us regret bounds in expectation. What about high probability regret
guarantees?




Bandit Newton Step : h.p. regret bounds

e Our local quadratic approximation of f: has high variance at points far away from x¢
o Quadratic approximation: f(y;) + (§,, ¢ — ;) + (& — z;) T Hy(x — )

o variance scales with ||z — z¢|| 4,, where A; is the cumulative Hessian

e Focus Region: Restrict the learner to low variance regions
Fe=Fn{z:|z— s <7}

where 77 is a constant, Fy = X



Bandit Newton Step : h.p. regret bounds

e Focus region can only guarantee low regret within F;
o we want low regret over the entire domain X

e Restart Condition: At every iteration, check if the minimizer of the cumulative
loss is in the focus region
o we design a computationally efficient way to test this
o If the test fails, restart the algorithm (regret so far is negative)!.

C

t t
;fs(xs) - ;Téipr:;ﬁ(x) >



Main Result

Suppose the sequence of losses are convex, quadratic.

Then BNS with focus region and restart condition gets O(d'%7'*/2) regret with h.p

« The result holds with high probability against adaptive adversaries

» The technique was improved by [Fokkema et al. 2024]

18
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Application to Bandit Nonstochastic Control

Controller interacts with system

. System and receives bandit feedback
e State: x, Y, of convex cost Ct(yu Ut) at
o Dynamics: 4, B \\‘ time /
System evolves
Xt+1 — Axt + But + /4 Cx¢ +|e;
y Ve Goal: minimize regret
\«\ Controller
Control: u; ‘// T r
t=1

nonstochastic/adversarial disturbances



Application to Bandit Nonstochastic Control

Assumptions

e stability: system is stable

e oblivious adversary: perturbations are generated by an oblivious adversary and are
bounded

e quadratic costs: the cost functions are strongly convex and smooth

[ N

e Past works: either considered full information setting or placed more
restrictive assumptions on the perturbations

e This work: can we derive optimal algorithms for LQ problem under bandit
feedback and adversarial perturbations? J




DRC Policy Class

Standard technique in nonstochastic control

e Convex comparator class Disturbance Response Controller (DRC)
o Play controls that are linear combinations of past noises/signals.

Ct (yt ) ut) signal depending on {w;, e,}"_*

s=1
linear in past 77 controls l m—1 i
= {(yt + Z ]\{mytfij
7=0

stabilizing controller M = MOm=1DRC matrix

[ Q: Identify optimal M }




Reduction to Bandit Optimization with Memory

Since our system is stable

e effect of past controls decay over time
e we can reduce the control problem to bandit optimization with memory of the

following form
o Loss at time £.depends on the past actions . : ft (zt, Zt—14 e Zt—m)

Goal: minimize regret: Z fe(zt, 2t-1 -+« 2t—m) — mzin fi(z,...2)
t



Challenge in bandit nonstochastic control of LQ problems

Cost functions in LQ are strongly convex and smooth:

Can we obtain the optimal /T regret?

Challenge: with adversarial noises, the control cost induced loss function is
not guaranteed to be strongly convex

adversarial

However, the loss function is always k-convex with known matrices



Main result in bandit control of LQ problems
4 I

Suppose a LDS is stabilizable, Ct's are quadratic (smooth, and strongly-convex) and generated
by an oblivious adversary. Suppose the sequence of perturbations {wt, 6t} are bounded and
given by an oblivious adversary.

Then there exists an algorithm based on Bandit Newton Step that achieves O(\/T) regret in
expectation w.r.t. the class of DRC controllers.

/
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Conclusion

e Right exploration is crucial for achieving optimal regret in bandit optimization

e \We proposed a Bandit Newton method for optimization of k-convex losses
o The algorithm is simple and relies on single point estimate of Hessian. But high probability
guarantees still require focus regions and restart conditions

o Key insight: x-convexity helps us get an optimistic hessian estimate for the entire action
space
e Results for bandit LQ control
o Challenge: adversarial noises can break the strong convexity of loss induced by control costs.
o However, the induced loss function satisfies k-convexity with known matrix parameters due to
the memory structure of nonstochastic control problems.



Future Work

d BCO
e “Proper”learning algorithm for bandit optimization of xk-convex losses
e Extensions to general convex losses

A Online non-stochastic control
e Extension to general cost functions



Questions?

Thanks! You can reach out to arunss@agooagle.com
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