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Online Learning with Bandit Feedback

Repeated game between learner and an adversary
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Applications

● Two player zero sum games:

○ example: constrained optimization, robust ML

● Online advertising systems
○ An advertiser submits a bid and only observes the reward if they won the auction

● Hyperparameter optimization in ML
○ Tuning learning rate, regularization strength etc.. 

● Non-stochastic control



Background

● Gradient based methods  
○ estimate the gradient at point 𝑥 as

■    is a random vector sampled from unit sphere 
■ this is an unbiased estimate of gradient of

○ perform stochastic gradient descent on the smoothed function                  

Methods Setting Regret

[Flaxman et. al’ 04] bounded convex

[Abernethy et. al’ 09] linear

[Saha-Tewari ’ 11] smooth convex

[Hazan-Levy’ 14] strongly convex, 
smooth

Stoke’s theorem



Background

● General convex losses: Regret optimal (in T) algorithms were developed by  
Bubeck et al. (2017), Lattimore (2020)

● Lattimore (2020) only show the existence of a strategy, but do not provide any 
constructive algorithm

● Bubeck et al. (2017) develop an extension of exponential weights algorithm 
○ but the runtime of the algorithm is large, and is not implementable in practice 

This work: Develop regret optimal, computationally efficient algorithms for a broad class of 
loss functions.  



Key Observation

● Challenge: achieve the right exploration exploitation trade-off

● Most existing works only estimate gradients 
of the loss function

○ They ignore curvature information and perform 
poor exploration

regret of various gradient based techniques on convex 
quadratic loss function

● An ideal algorithm performs:
○ less exploration along high curvature directions 
○ more exploration along low curvature directions

This work: estimate higher order information 
(Hessian) of the loss function for better exploration  



𝜿-convex loss functions

Definition: 𝑓 is called  𝜿-convex if 
there exist constants ᴄ1, ᴄ2 and a 
PSD matrix 𝐻 such that

where 

Examples
● Linear, Quadratic
● Generalized Linear Models: logistic regression
● Strongly convex and Smooth



Main Result

Suppose 𝑓t’s are 𝜿-convex and generated by an oblivious adversary

Then there exists an algorithm that achieves                                                       regret in 
expectation 

Remarks
● The algorithm is an improper algorithm that plays iterates outside the constraint set
● For bandit logistic regression this gives a regret of                    

○ where  D is the diameter of the parameter space    
○         hides all parameters other than D, T



Online Logistic Regression





Bandit Newton Step (BNS)

● Randomly sample                from surface of a unit sphere 

● Compute 

❏     is the cumulative Hessian estimate

● Estimate gradients, Hessians from single point feedback

Gradient: 

Hessian: 

●     which dictates the exploration, relies on curvature of cumulative loss 



Bandit Newton Step (BNS)

● Perform Newton step using the estimated gradients, Hessians

○ where      is the projection onto     w.r.t 



Key steps for deriving regret bound 

●      is a good approximation of the true cumulative Hessian

● Expected regret can be decomposed as

         where      is the following smoothing of  



Key steps for deriving regret bound 

    

● First term: BNS performs stochastic newton step on 
○ Reduction to stochastic online Newton method

○ Stochastic Online Newton Step has good regret bounds in expectation

● Second term:           are close to each other over the entire domain, because of 

𝜿-convexity

Question: This only gives us regret bounds in expectation. What about high probability regret 
guarantees?



Bandit Newton Step : h.p. regret bounds

● Our local quadratic approximation of      has high variance at points far away from

○ Quadratic approximation: 

○ variance scales with                  , where       is the cumulative Hessian 

● Focus Region: Restrict the learner to low variance regions

where    is a constant, 



Bandit Newton Step : h.p. regret bounds

● Focus region can only guarantee low regret within 
○ we want low regret over the entire domain 

● Restart Condition: At every iteration, check if the minimizer of the cumulative 
loss is in the focus region 
○ we design a computationally efficient way to test this
○ If the test fails, restart the algorithm (regret so far is negative)!.



Main Result

18

• The result holds with high probability against adaptive adversaries

• The technique was improved by [Fokkema et al. 2024]

Suppose the sequence of losses are convex, quadratic. 

Then BNS with focus region and restart condition gets                      regret with h.p  





Application to Bandit Nonstochastic Control
Controller interacts with system 
and receives bandit feedback 
of convex cost                  at 
time     

Goal: minimize regret

nonstochastic/adversarial disturbances



Application to Bandit Nonstochastic Control

Assumptions

● stability: system is stable
● oblivious adversary: perturbations are generated by an oblivious adversary and are 

bounded
● quadratic costs: the cost functions are strongly convex and smooth

● Past works: either considered full information setting or placed more 
restrictive assumptions on the perturbations

● This work: can we derive optimal algorithms for LQ problem under bandit 
feedback and adversarial perturbations?



DRC Policy Class

Standard technique in nonstochastic control

● Convex comparator class Disturbance Response Controller (DRC)
○ Play controls that are linear combinations of past noises/signals.

Q: Identify optimal M

DRC matrix

signal depending on

stabilizing controller

linear in past          controls 



Reduction to Bandit Optimization with Memory

Since our system is stable

● effect of past controls decay over time 
● we can reduce the control problem to bandit optimization with memory of the 

following form
○ Loss at time    depends on the past actions      :

Goal: minimize regret:



Challenge in bandit nonstochastic control of LQ problems

Cost functions in LQ are strongly convex and smooth: 

Can we obtain the optimal      regret?

Challenge: with adversarial noises, the control cost induced loss function is 
not guaranteed to be strongly convex

However, the loss function is always 𝜿-convex with known matrices

adversarial



Main result in bandit control of LQ problems

Suppose a LDS is stabilizable,     's are quadratic (smooth, and strongly-convex) and generated 
by an oblivious adversary. Suppose the sequence of perturbations                 are bounded and 
given by an oblivious adversary.

Then there exists an algorithm based on Bandit Newton Step that achieves              regret in 
expectation w.r.t. the class of DRC controllers.





Conclusion

● Right exploration is crucial for achieving optimal regret in bandit optimization
● We proposed a Bandit Newton method for optimization of 𝜿-convex losses

○ The algorithm is simple and relies on single point estimate of Hessian. But high probability 
guarantees still require focus regions and restart conditions

○ Key insight:  𝜿-convexity helps us get an optimistic hessian estimate for the entire action 
space

● Results for bandit LQ control
○ Challenge: adversarial noises can break the strong convexity of loss induced by control costs. 
○ However, the induced loss function satisfies 𝜿-convexity with known matrix parameters due to 

the memory structure of nonstochastic control problems. 



Future Work

❏ BCO
● “Proper” learning algorithm for bandit optimization of 𝜿-convex losses
● Extensions to general convex losses

❏ Online non-stochastic control
● Extension to general cost functions



Questions?

Thanks! You can reach out to arunss@google.com
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