Second Order Methods for Bandit Optimization and Control

Praneeth Netrapalli

Elad Hazan

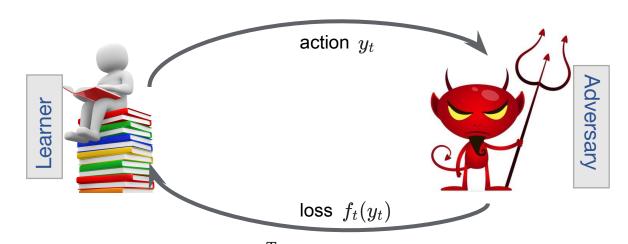
Based on work published at COLT 2021, 2024

Outline

- 01 Introduction
- 02 Bandit Newton Method
- 03 Online Non-stochastic Control
- 04 Conclusion & Future Work

Online Learning with Bandit Feedback

Repeated game between learner and an adversary



Goal: minimize regret $\sum_{t=1}^T f_t(y_t) - \min_{x \in X} f_t(x)$

Applications

- Two player zero sum games: $\min_{x \in X} \max_{y \in Y} g(x, y)$
 - example: constrained optimization, robust ML
- Online advertising systems
 - o An advertiser submits a bid and only observes the reward if they won the auction
- Hyperparameter optimization in ML
 - Tuning learning rate, regularization strength etc..
- Non-stochastic control

Background

Gradient based methods

- \circ estimate the gradient at point x as $(d/\delta)f(x+\delta u)u$
 - lacktriangleq u is a random vector sampled from unit sphere
 - lacksquare this is an unbiased estimate of gradient of $\mathbb{E}_v[f(x+\delta v)]$

perform stochastic gradient descent on the smoothed function

Methods	Setting	Regret	
[Flaxman et. al' 04]	bounded convex	$O(T^{5/6})$	
[Abernethy et. al' 09]	linear	$O(T^{1/2})$	
[Saha-Tewari ' 11]	smooth convex	$O(T^{2/3})$	
[Hazan-Levy' 14]	strongly convex, smooth	$O(T^{1/2})$	

Stoke's theorem $\nabla \int_{\delta \mathbb{B}} f(x+v) dv = \int_{\delta \mathbb{S}} f(x+u) \frac{u}{\|u\|} du.$

Background

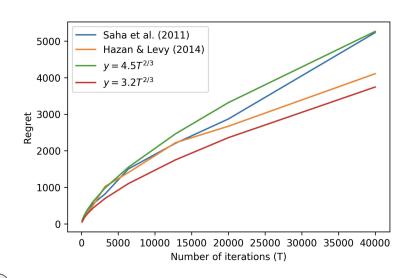
- General convex losses: Regret optimal (in T) algorithms were developed by Bubeck et al. (2017), Lattimore (2020)
- Lattimore (2020) only show the existence of a strategy, but do not provide any constructive algorithm
- Bubeck et al. (2017) develop an extension of exponential weights algorithm
 - o but the runtime of the algorithm is large, and is not implementable in practice

This work: Develop regret optimal, computationally efficient algorithms for a broad class of loss functions.

Key Observation

- Challenge: achieve the right exploration exploitation trade-off
- Most existing works only estimate gradients of the loss function
 - They ignore curvature information and perform poor exploration
- An ideal algorithm performs:
 - less exploration along high curvature directions
 - more exploration along low curvature directions

This work: estimate higher order information (**Hessian**) of the loss function for better exploration

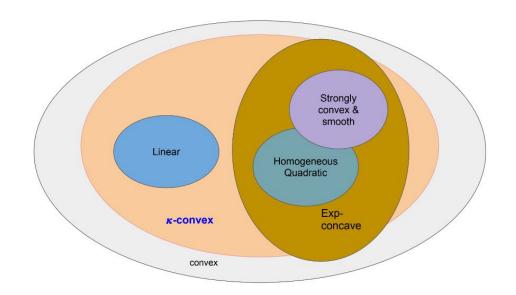


regret of various gradient based techniques on convex quadratic loss function

κ -convex loss functions

Definition: f is called κ -convex if there exist constants c_1 , c_2 and a PSD matrix H such that

$$orall x,\; c_1 H \preceq
abla^2 f(x) \preceq c_2 H$$
 where $rac{c_2}{c_1} \leq \kappa, 0 \preceq H \preceq I$



Examples

- Linear, Quadratic
- Generalized Linear Models: logistic regression
- Strongly convex and Smooth

Main Result

Suppose f_t 's are κ -convex and generated by an oblivious adversary

Then there exists an algorithm that achieves $O(d^{5/2}\kappa\min(d^{1/2},\kappa)T^{1/2})$ regret in expectation

Remarks

- The algorithm is an improper algorithm that plays iterates outside the constraint set
- For bandit logistic regression this gives a regret of $O(e^D\sqrt{T})$
 - where D is the diameter of the parameter space
 - \circ $O(\cdot)$ hides all parameters other than D, T

Online Logistic Regression

Paper	Feedback	Advers.	Proper	Regret	Comp.	Note
Hazan et al. (2007)	full	✓	✓	$ ilde{O}(e^D)$	$O(d^2)$	
Hazan et al. (2014)	full	×	✓	$\tilde{\Omega}(e^D \vee \sqrt{DT})$	-	
Foster et al. (2018)	full	✓	×	$ ilde{O}(1)$	poly(d, T)	
Hazan and Kale (2011)	semi-bandit	✓	✓	$\tilde{O}(e^D \wedge DT^{2/3})$	$O(d^2)$	
Foster et al. (2018)	semi-bandit	✓	×	$\tilde{O}(e^D \wedge \sqrt{T})$	poly(d, T)	
Dong et al. (2019)	bandit	×	✓	$\tilde{O}(\sqrt{T})$	poly(d)	Bayesian
Faury et al. (2022)	bandit	×	✓	$\tilde{O}(e^D \vee \sqrt{T})$	$O(d^2)$	frequentist
Corollary 8	bandit	✓	×	$O(e^{2D}\sqrt{T})$	$O(d^2)$	

Table 4: Comparison with relevant prior works for online logistic regression. $\tilde{O}, \tilde{\Omega}$ in the regret column hide all parameters other than D, T and logarithmic factors in D, T.

Outline

- 01 Introduction
- 02 Bandit Newton Method
- 03 Online Non-stochastic Control
- 04 Conclusion & Future Work

Bandit Newton Step (BNS)

- Randomly sample $v_{t,1}, v_{t,2}$ from surface of a unit sphere
- ullet Compute $y_t=x_t+ ilde{A}_{t-1}^{-1/2}(v_{t,1}+v_{t,2})$
 - $oldsymbol{\Box}$ \tilde{A}_t is the cumulative Hessian estimate
- Estimate gradients, Hessians from single point feedback

Gradient:
$$ilde{g}_t = 2df_t(y_t) ilde{A}_{t-1}^{rac{1}{2}}v_{t,1}$$
 Hessian: $ilde{H}_t = 2d^2f_t(y_t) ilde{A}_{t-1}^{rac{1}{2}}(v_{t,1}v_{t,2}^ op + v_{t,2}v_{t,1}^ op) ilde{A}_{t-1}^{rac{1}{2}}$

ullet $ilde{A}_t$ which dictates the exploration, relies on curvature of cumulative loss

$$ilde{A}_t = I + rac{\eta}{\kappa'} \sum_{c=1}^t ilde{H}_t$$

Bandit Newton Step (BNS)

Perform Newton step using the estimated gradients, Hessians

$$x_{t+1} = \prod_{t=1}^{ ilde{A}_t} \left[x_t - \eta ilde{A}_t^{-1} ilde{g}_t
ight]$$

 \circ where $\prod\limits_{X}^{A_t}$ is the projection onto X w.r.t $\|\cdot\|_{ ilde{A_t}}$

Key steps for deriving regret bound

ullet $ilde{A}_t$ is a good approximation of the true cumulative Hessian

$$0.5A_t \prec \tilde{A}_t \prec 1.5A_t$$

Expected regret can be decomposed as

$$\mathbb{E}\left[\sum_t f_t(y_t) - f_t(x)
ight] = \mathbb{E}\left[\sum_t { ilde f}_{t}(y_t) - { ilde f}_{t}(x)
ight] + \mathbb{E}\left[\sum_t (f_t(y_t) - { ilde f}_{t}(y_t)) - (f_t(x) - { ilde f}_{t}(x))
ight]$$

where $ilde{f}_t$ is the following smoothing of f_t

$$\left\{ ilde{f}_{t}(x) = \mathbb{E}_{u,v}\left[f_{t}\left(x + ilde{A}_{t-1}^{-1/2}(u+v)
ight)
ight]
ight\}$$

Key steps for deriving regret bound

$$\mathbb{E}\left[\sum_{t}f_{t}(y_{t})-f_{t}(x)
ight]=\mathbb{E}\left[\sum_{t} ilde{f}_{t}(y_{t})- ilde{f}_{t}(x)
ight]+\mathbb{E}\left[\sum_{t}(f_{t}(y_{t})- ilde{f}_{t}(y_{t}))-(f_{t}(x)- ilde{f}_{t}(x))
ight]$$

- ullet First term: BNS performs stochastic newton step on $ilde{f}_t$
 - Reduction to stochastic online Newton method
 - Stochastic Online Newton Step has good regret bounds in expectation
- Second term: f_t , \tilde{f}_t are close to each other over the entire domain, because of κ -convexity

Question: This only gives us regret bounds in expectation. What about high probability regret quarantees?

Bandit Newton Step: h.p. regret bounds

- ullet Our local quadratic approximation of f_t has high variance at points far away from x_t
 - \circ Quadratic approximation: $f(y_t) + \langle { ilde g}_t, x x_t
 angle + (x x_t)^T { ilde H}_t (x x_t)^T$
 - \circ variance scales with $||x-x_t||_{A_t}$, where A_t is the cumulative Hessian
- Focus Region: Restrict the learner to low variance regions

$$F_t = F_{t-1} \cap \{x: \|x-x_t\|_{A_t} \leq \gamma\}$$

where γ is a constant, $F_0 = X$

Bandit Newton Step: h.p. regret bounds

- ullet Focus region can only guarantee low regret within F_t
 - \circ we want low regret over the entire domain X
- Restart Condition: At every iteration, check if the minimizer of the cumulative loss is in the focus region
 - we design a computationally efficient way to test this
 - If the test fails, restart the algorithm (regret so far is negative)!.

$$\sum_{s=1}^{t} \widehat{f}_s(x_s) - \min_{x \in F_t} \sum_{s=1}^{t} \widehat{f}_s(x) \ge -\frac{c}{\eta_1}$$

Main Result

Suppose the sequence of losses are convex, quadratic.

Then BNS with focus region and restart condition gets $O(d^{16}T^{1/2})$ regret with h.p

- The result holds with high probability against adaptive adversaries
- The technique was improved by [Fokkema et al. 2024]

Outline

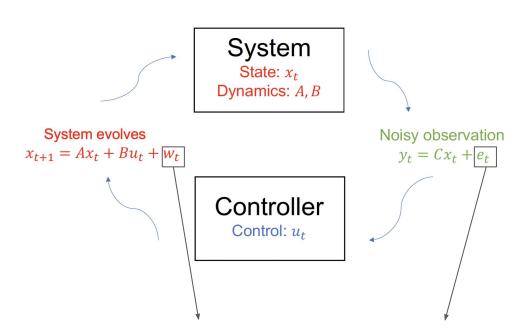
01 Introduction

02 Bandit Newton Method

03 Online Non-stochastic Control

Conclusion & Future Work

Application to Bandit Nonstochastic Control



nonstochastic/adversarial disturbances

Controller interacts with system and receives **bandit** feedback of convex cost $c_t(y_t, u_t)$ at time t

Goal: minimize regret

$$\sum_{t=1}^{T} c_t(y_t, u_t) - \min_{\pi \in \Pi} \sum_{t=1}^{T} c_t(y_t^{\pi}, u_t^{\pi})$$

Application to Bandit Nonstochastic Control

Assumptions

- stability: system is stable
- oblivious adversary: perturbations are generated by an oblivious adversary and are bounded
- quadratic costs: the cost functions are strongly convex and smooth

- Past works: either considered full information setting or placed more restrictive assumptions on the perturbations
- This work: can we derive optimal algorithms for LQ problem under bandit feedback and adversarial perturbations?

DRC Policy Class

Standard technique in nonstochastic control

- Convex comparator class Disturbance Response Controller (DRC)
 - Play controls that are linear combinations of past noises/signals.

$$C_t(y_t, u_t) \\ \text{ signal depending on } \{w_s, e_s\}_{s=1}^{t-j} \\ = Ky_t + \sum_{j=0}^{m-1} M^{[j]} y_{t-j}^K \\ \text{ stabilizing controller } M = M^{[0:m-1]} \, \mathsf{DRC} \, \mathsf{matrix}$$

Q: Identify optimal M

Reduction to Bandit Optimization with Memory

Since our system is stable

- effect of past controls decay over time
- we can reduce the control problem to bandit optimization with memory of the following form
 - \circ Loss at time t depends on the past actions m : $f_t(z_t, z_{t-1}, \dots z_{t-m})$

Goal: minimize regret:
$$\sum_t f_t(z_t, z_{t-1} \dots z_{t-m}) - \min_z f_t(z, \dots z)$$

Challenge in bandit nonstochastic control of LQ problems

Cost functions in LQ are strongly convex and smooth:

Can we obtain the optimal \sqrt{T} regret?

Challenge: with adversarial noises, the control cost induced loss function is not guaranteed to be strongly convex

$$c_t(y_t, u_t)$$
 adversarial $= Ky_t + \sum_{j=0}^{m-1} M^{[j]} y_{t-j}^K$

However, the loss function is always κ -convex with known matrices

Main result in bandit control of LQ problems

Suppose a LDS is stabilizable, C_t 's are quadratic (smooth, and strongly-convex) and generated by an oblivious adversary. Suppose the sequence of perturbations $\{w_t, e_t\}$ are bounded and given by an oblivious adversary.

Then there exists an algorithm based on Bandit Newton Step that achieves $\tilde{O}(\sqrt{T})$ regret in expectation w.r.t. the class of DRC controllers.

Outline

01 Introduction

02 Bandit Newton Method

Online Non-stochastic Control

04 Conclusion & Future Work

Conclusion

- Right exploration is crucial for achieving optimal regret in bandit optimization
- We proposed a Bandit Newton method for optimization of κ -convex losses
 - The algorithm is simple and relies on single point estimate of Hessian. But high probability guarantees still require focus regions and restart conditions
 - \circ **Key insight**: κ -convexity helps us get an optimistic hessian estimate for the entire action space
- Results for bandit LQ control
 - Challenge: adversarial noises can break the strong convexity of loss induced by control costs.
 - \circ However, the induced loss function satisfies κ -convexity with known matrix parameters due to the memory structure of nonstochastic control problems.

Future Work

- □ BCO
 - "Proper" learning algorithm for bandit optimization of κ -convex losses
 - Extensions to general convex losses
- Online non-stochastic control
 - Extension to general cost functions

Questions?

Thanks! You can reach out to arunss@google.com